

WiFi-Direct InterNetworking

PhD student: António Teófilo 1,2

Advisors: Hervé Paulino² João Lourenço² PhD state: planner ...

Research area: Networking

¹ADEETC, ISEL, Instituto Politécnico de Lisboa, Portugal ²NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa, Portugal

April, 2018

PhD: WiFi-Direct Internetworking

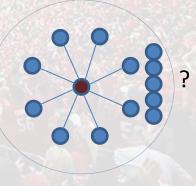
- Problem: why not WiFi-Direct multi-hop networks?
 - without any supportive communication infrastructure
- Importance: enable communication with WiFi speed and range with off-the-shelf devices
- Phase 1: efficient communication in WiFi-Direct multi-hop networks
 - Statement: using WiFi and WiFi-Direct interfaces of Android 5 Compliant devices and addressing to the address in WiFi interface
 - Consequence: communication (TCP and UDP) topologies that only use unicasts
- Phase 2: algorithms to create WiFi-Direct multi-hop networks
 - Statement: BSF algorithms prefer nodes with limited number of slaves (ODL);
 WiFi-Direct needs that, and also, limited number of masters (IDL)
 - Consequence: WiFi-Direct network formation algorithms to support autonomous mobile systems (edge-clouds)

ODL: Out-Degree Limited IDL: In-Degree Limited

Current challenges

- Network formation algorithms
 - for tree like networks, using only GOGO:
 - BlueTrees BSF: can't be used directly; but can be adapted to use information from the election algorithm
 - for mesh networks, using GOCRGO (and GOGO):
 - We need: out-degree limited to 8 and in-degree of 1; or, indegree of 2 and out-degree of 0
 - Several BSF algorithms considered to be adapted
- WiFi-Direct simulator
 - WiDiSi (PeerSim) or WFD-INET-OMNeT++ (OMNeT++)

Context / Motivation

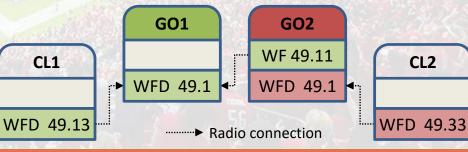

- Mobile autonomous edge-clouds
- Using out of the box devices
- Use cases:

<EI

- Facial recognition services to search for missing persons in large crowds
- Videos or photos services to share data in large events
- Messaging and data services in catastrophe situations

WiFi Direct (WFD)

- General context:
 - Non-rooted Android device communication with WFD
 - To enable data and computing services in case of no network infra-structure
- WFD specification enable communication inside groups, and allows:
 - Node discovery;
 - Group Owner (GO) selection;
 - Node that acts as soft AP for the group,
 - controls group membership,
 - provides DHCP and routing for the others
 - Node authentication
 - Accepts WFD or WiFi (WF) (should know SSID and PSK) clients
- But each GO supports only 8 clients
- Wi-Fi Direct does not tackle intergroup communication


Wi-Fi Direct inter-group comm. limitations

- WFD Group bridging:
 - Using only WFD, one device can only belong to a single WFD group
 - But can participate in another WFD group using its WiFi interface as a legacy device
- Problems:
 - All GOs have the same IP address (and network address): 192.168.49.1/24
 - A device connected with both, WFD and WiFi interfaces, will route all unicast traffic to one interface, the priority interface (*priInt*)

CMU Portugal

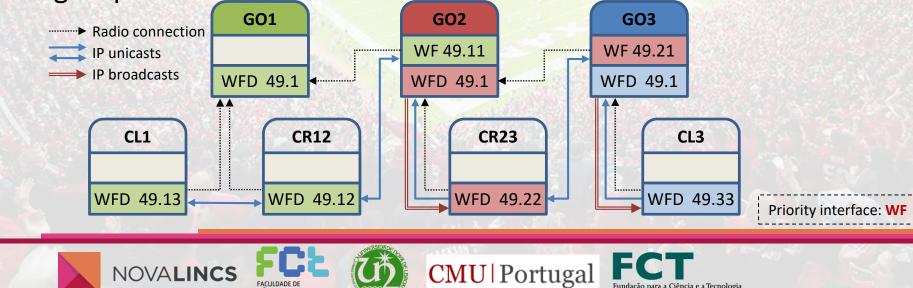
- Communication problems example:
 - With WFD as *priInt* and using UDP:
 - CL1 \rightarrow GO2, GO2 \rightarrow CL2
 - CL2 \rightarrow GO2, GO2 GO1 or GO2 CL1

Addresses shortened to last two octets: 192.168.49.1 = 49.1

Current inter-group communication topologies with WFD

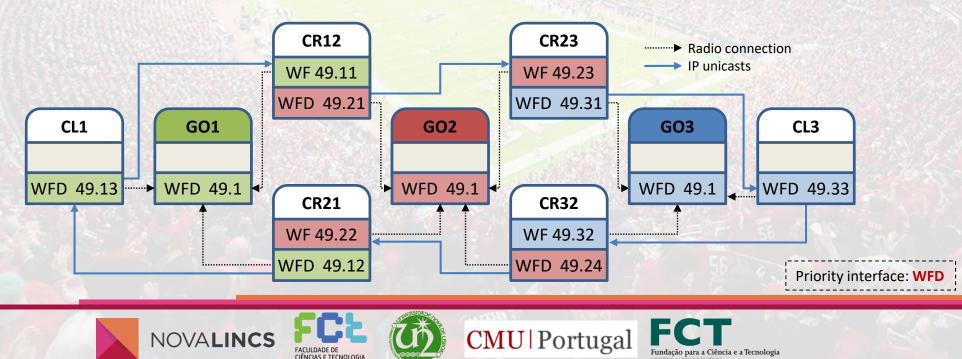
• GOCR – Casetti, et al.

• GO2CR – Teófilo, et al.

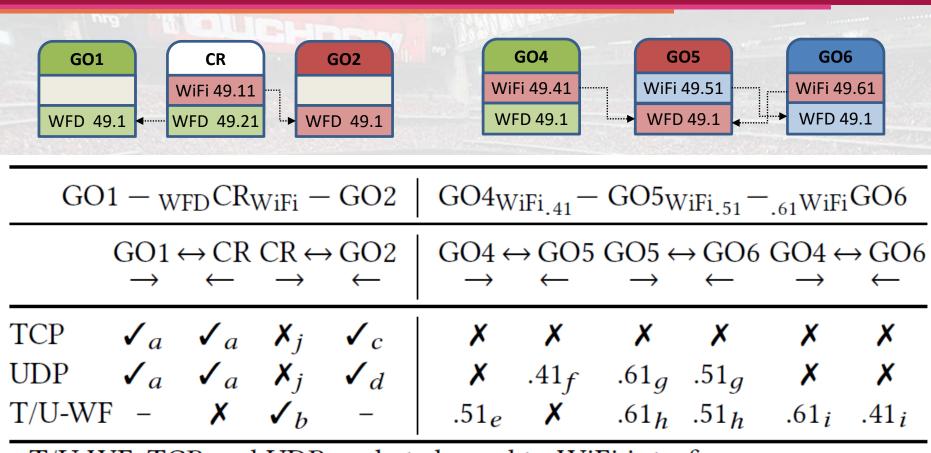


GOCR (Casetti, et al.)

- Each GO uses a Client Relay, to enable inter-group data forwarding using UDP and UDP broadcasts
 - Communication between GO2 and GO3:


CIÊNCIAS E TECNOLOGIA

- GO2 \rightarrow CR23 (1 broadcast), CR23 \rightarrow GO3 (1 IP unicast msg , using 2 MAC msgs)
- − GO3 → CR23 (1 IP unicast msg, 2 MAC msgs), CR23 → GO2 (1 IP unicast)
- Main problems: require broadcasts; 3 data transmissions to traverse WFD groups



GO2CR (Teófilo, et al.)

- Pairs of GOs interconnected by 2 CRs
 - CRs connected in a symmetric way, each one forwarding data in just one direction, from WF to WFD interfaces; supports UDP and/or TCP
- Data forwarding: CRs at IP level; GOs at MAC level
- Main problem: 2 auxiliary (CR) nodes between GOs

Communication assessment

CMU|Portugal

T/U-WF: TCP and UDP sockets bound to WiFi interface *

* Requires Android 5 Compliant devices

NOVALINCS

Priority interface: WFD

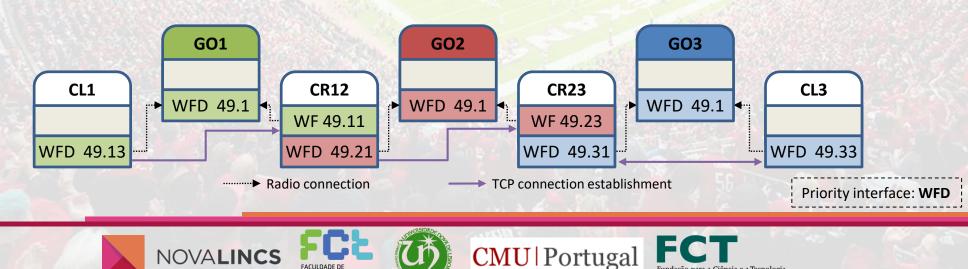
undação para a Ciência e a Tecnologia

<EURO/SYS'18>

Proposed inter-group communic ation topologies with WFD

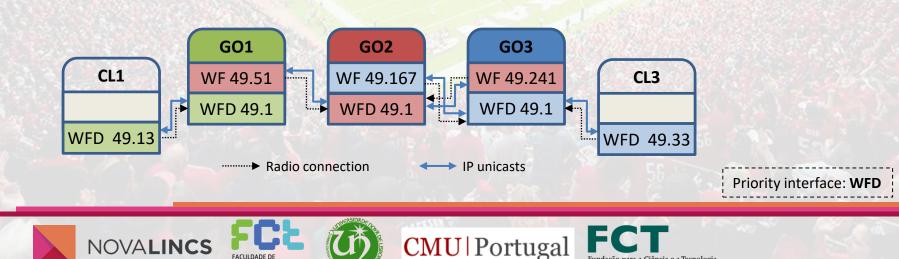
GOCRGO – uses one CR between GOs

GOGO – direct GO to GO communication


undação para a Ciência e a Tecnologia

GOCRGO topology

- Requires 1 relay node between GOs and TCP connections •
 - The use of UDP datagrams requires Android 5 compliant devices
 - To enable sockets bound to WF interface (ex: $CR23_{WF} \rightarrow CR12_{21}$)
 - The relay node can extend radio range between GOs
- CRs should create a TCP connection to the next CR, using their • priority interface, and they can use it bidirectionally
- Data forwarding: CRs at IP level; GOs at MAC level ٠


CIÊNCIAS E TECNOLOGIA

NOVALINCS

GOGO topology

- Direct GO-GO communication, requires Android 5 compliant devices •
 - all GOs must have their WF interface connected
- Each GO can create TCP connections in its WF interface to the GO^τ connected in that interface, but to the address in the WF interface of that GO^T - that connection is used bidirectionally
 - Ex: $GO1_{WE} \rightarrow GO2_{167}$
- In UDP: $GO1_{WF} \rightarrow GO2_{167}$; and $GO2 \rightarrow GO1_{51}$

undação para a Ciência e a Tecnologia

Topologies analysis

- Spatial node requirements
- Communication speed
- Routing requirements
- Network frequency usage
- Network path redundancy
- Network flexibility
- Extreme situations: sparse and crowded networks

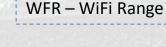
Topologies analysis

- Spatial node requirements
 - Number of nodes per WFR
- Communication Speed
 - S_{MAX} max speed in one direction, SBD_{MAX} max speed in bidirectional comm.
 WiFi Unicast Speed (WFS) = 54 Mbps, Broadcast Speed (BCS) = 6 Mbps, BCF = WFS / BCS = 9

Routing

Number of Routing Operation per WFR

NOVALINCS


#Nodes / WFR SMAX SBD_{Max} Mbps* **#RO/WFR** GOCR WFS / 3, WFS / (2 + BCF) WFS / (5 + BCF) = 3.86 2 3 GO2CR WFS/2 1.5 WFS / 4 = 13.5GOCRGO WFS/2 WFS / 4 = 13.51 GOGO 1 **WFS / 1** WFS / 2 = 27

WFR

<EURO/SYS'18>

Topologies analysis

	Freqs per 2 WFRs	Freqs needed 1D / 2D	RC	RP TS SP BEM ECS NF	ES S/C	AD	Net. Struct.
GOCR	2	4 / 6	+	×	x / –	ANY	Tree
GOGO	2	4 / 6	+	×	+/+	A5C	Tree
GO2CR	1	2/3	-	✓	x / –	ANY	Mesh
GOCRGO	1	2/3	-	~	-/-	ANY	Mesh

RC = Radio coverage;

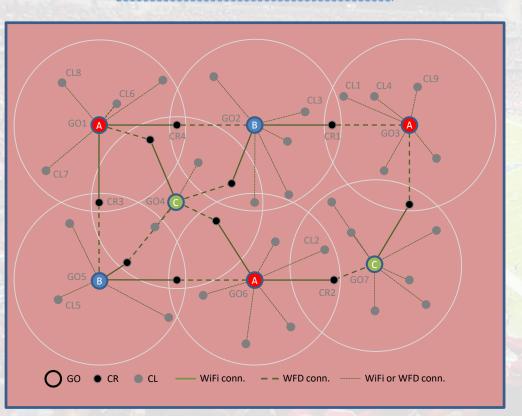
RP = Redundant Paths; TS = Traffic Splitting; SP = Short Paths; BEM = Better Energy Management and Efficiency; ECS = Extended Communication Speed; NF = Network Flexibility;

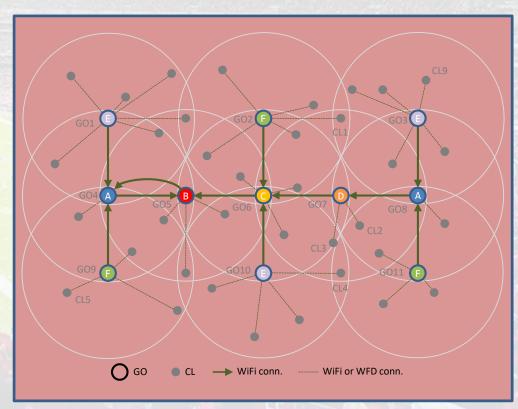
ES S/C = Extreme Situations: Sparse / Crowded scenarios;

AD = Android Device; A5C = Android 5 Compliant device.

NOVALINCS

Net. Struct. = Network Structure

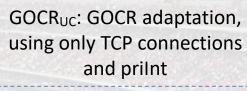




Topologies analysis

GOCRGO Topology - Mesh

GOGO Topology - Tree


Experimental results

- Nexus 6, Nexus 9: WFS = 100 Mbps, priInt = WFD
 - 100MB of data exchange between GOs, with data echo:
 - GOCR_{UC}:
 - GO2CR:

- GOGO:

- GOCRGO:

6 MAC msgs 4 MAC msgs 4 MAC msgs 2 MAC msgs

<EURO/SYS'18>

GO

CR

Energy (J/MB)				
4.8				
2.9				
2.6				
1.3				

Fundação para a Ciência e a Tecnologia

Conclusions

- We propose 2 new WFD inter-group topologies, requiring only unicasts
 - GOCRGO, that only needs one relay node between GOs:
 - offers shorter and alternative communication paths, traffic splitting, better energy management and efficiency, extended communication speed, network flexibility and better frequency usage
 - GOGO, that connects GOs directly, but needs Android 5 compliant devices:
 - offers better radio coverage and communication speed in sparse and crowded scenarios
- These topologies contribute for WFD mobile autonomous networks, for data and computing services
 - However, to make it real, devices should decently handle simultaneous communications in both interfaces (WiFi and WFD)
- Future work:
 - Explore internal changes in Android to improve simultaneously communication in both interfaces
 - Automatic network formation that should take into account node churn, topology, devices priority interface and Android version

Questions

