

Simplifying Datacenter Network Debugging with PathDump

Praveen Tammana[†], Rachit Agarwal[‡], Myungjin Lee[†] [†]School of Informatics - University of Edinburgh, [‡]Computer Science - Cornell University **Open source available at: https://github.com/PathDump/**

Datacenter networks are complex

- > Increasingly larger scale
- > Over 100,000 servers, over 10,000 switches
- Each server with 10 to 40 Gbps NIC
- High utilization: > 100 Tbps aggregate traffic
- Complexity due to the need for
 - \checkmark High availability
 - ✓ High performance

Latency matters. Amazon found every 100ms of latency cost them 1% in sales. Google found an extra .5 seconds in search page generation time dropped traffic by 20%. A broker could lose \$4 million in revenues per millisecond if their electronic trading platform is 5 milliseconds behind the competition.

Network debuggers are even more complex

- > Increasingly, network debugging functionality is pushed into the network due to improved switch programmability
- Existing tools employ complex in-network techniques such as data plane snapshot, per-switch per-packet logs, packet mirroring/sampling, and dynamic rule updates

Data plane snapshot

Per-switch per-packet logs

Selective mirroring/sampling Dynamic rule updates

PathDump: A minimalistic network debugger

- Partition debugging functionality between switches and end-hosts
 - ✓ In-network tools focus on a smaller set of problems
 - \checkmark Keeping networks and debugging tools as simple as possible

Before forwarding a packet, check a condition If met, embeds its ID into packet header

Example: Load imbalance diagnosis

- Equal-Cost Multi-Path (ECMP) forwarding
 - ✓ Popular network load-balancing scheme in DCN

- 1: result = { }; binsize = 10000
 2: linkIDs = (L1, L2); tRange = (t1, t2)
 3: for IID in linkIDs:
- 4: flows = getFlows (IID, tRange)
- 5: **for** flow **in** flows:
- 6: (bytes, pkts) = getCount (flow, tRange)
- 7: result[lID][bytes/binsize] += 1

8: **return** result

Conclusion and future work

- > DCNs are complex; and their debuggers are even more complex
- Carefully partitions debugging functionality between network switches and edge devices
- Requires no complex operations from network switches
 Debugs a large class of network problems
- Future work: Real-time network debugging

Flow size (bytes)

 $10^2 \ 10^4 \ 10^6 \ 10^8$

Link 1

Link 2

8.0

0.2

ц 0.6 О 0.4

System performance evaluation

