
The Hitchhiker’s Guide to
Cross-Platform OpenCL

Application Development

Tyler Sorensen (led the work and made the slidese)

Alastair F. Donaldson (delivered this version of the talk)

Imperial College London, UK

UKMAC

May 2016

1

“OpenCL supports a wide range of applications… through a
low-level, high-performance, portable abstraction.”

Page 11: OpenCL 2.1 specification

2

“OpenCL supports a wide range of applications… through a

low-level, high-performance, portable abstraction.”

Page 11: OpenCL 2.1 specification

3

“OpenCL supports a wide range of applications… through a

low-level, high-performance, portable abstraction.”

Page 11: OpenCL 2.1 specification

We consider functional portability rather than
performance portability

4

Example

• single source shortest path application

Quadro K5200 (Nvidia) Intel HD5500

5

Example

• single source shortest path application

Quadro K5200 (Nvidia) Intel HD5500

6

Example

• single source shortest path application

Quadro K5200 (Nvidia) Intel HD5500

7

An experience report on OpenCL portability

• How well is portability evaluated?

• Our experience running applications on 8 GPUs spanning 4 vendors

• Recommendations going forward

8

An experience report on OpenCL portability

• How well is portability evaluated?

• Our experience running applications on 8 GPUs spanning 4 vendors

• Recommendations going forward

9

Portability in research literature

• Reviewed the 50 most recent OpenCL papers on:
http://hgpu.org/

• Only considered papers including GPU targets

• Only considered papers with some type of experimental evaluation

• How many different vendors did the study experiment with?

10

http://hgpu.org/

Portability in research literature

58%

(29)

1

Results
(number of evaluated vendors)

11

Portability in research literature

58%

(29)

36%

(18)

1 2

Results
(number of evaluated vendors)

12

Portability in research literature

58%

(29)

36%

(18)

6%

(3)

1 2 3

Results
(number of evaluated vendors)

13

Portability in research literature
Results

(which vendor)

39

23

8

3
1

Nvidia AMD Intel ARM Imagination
14

Portability in research literature
Results

(which vendor)

39

23

8

3
1

Nvidia AMD Intel ARM Imagination

Portability is not well tested in research literature!

15

An experience report on OpenCL portability

• How well is portability evaluated?

• Our experience running applications on 8 GPUs spanning 4 vendors

• Recommendations going forward

16

Applications

• Part of a larger study on GPU irregular parallelism

https://github.com/pannotia/pannotia 17

Applications

Pannotia

• Target AMD Radeon HD 7000

• Written in OpenCL 1.x

• 4 graph algorithms applications

• Our aim: run these benchmarks on
OpenCL platorms from several vendors

https://github.com/pannotia/pannotia 18

Applications

Pannotia

https://github.com/pannotia/pannotia

GPU_linear_algebra_routine1;

GPU_linear_algebra_routine2;

GPU_linear_algebra_routine3;

Loop until a fixed point is reached.

19

• Target AMD Radeon HD 7000

• Written in OpenCL 1.x

• 4 graph algorithms applications

• Our aim: run these benchmarks on
OpenCL platorms from several vendors

Applications

LonestarGPU

• Target Nvidia Kepler and Fermi

• Written in CUDA

• 4 graph algorithms applications

• Our aim: port these benchmarks to
OpenCL to run across a range of platforms

http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu 20

Applications

LonestarGPU

http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu

shared worklist

wg0

wg1

wg2

wg3

21

• Target Nvidia Kepler and Fermi

• Written in CUDA

• 4 graph algorithms applications

• Our aim: port these benchmarks to
OpenCL to run across a range of platforms

Chip Vendor Compute Units OpenCL Version Type

GTX 980 Nvidia 16 1.1 Discrete

Quadro K500 Nvidia 12 1.1 Discrete

Iris 6100 Intel 47 2.0 Integrated

HD 5500 Intel 24 2.0 Integrated

Radeon R9 AMD 28 2.0 Discrete

Radeon R7 AMD 8 2.0 Integrated

Mali-T628 ARM 4 1.2 Integrated

Mali-T628 ARM 2 1.2 integrated

GPUs

22

Portability Issues

12 issues encountered, grouped into categories

• 3 Framework bugs

• 6 Specification limitations

• 3 Programming bugs

23

Portability Issues

12 issues encountered, grouped into categories

• 3 Framework bugs

• 6 Specification limitations

• 3 Programming bugs

24

Framework bugs

#1 Compiler crash

Platforms: Intel

25

Framework bugs

#1 Compiler crash

Platforms: Intel

26

Framework bugs

#1 Compiler crash

Platforms: Intel

compiling several large kernels occasionally crashes compiler

Workaround: reduce the number of kernels in file

27

Framework bugs

#2 Non-terminating loops

Platforms: Nvidia and AMD

28

Framework bugs

#2 Non-terminating loops

Platforms: Nvidia and AMD
while(true) {
 more_work = false;

 .. // Do computation,
 .. // if more work, set more_work

 if (!more_work)
 break;
}

This looping idiom used in kernel code

29

Framework bugs

#2 Non-terminating loops

Platforms: Nvidia and AMD
while(true) {
 more_work = false;

 .. // Do computation,
 .. // if more work, set more_work

 if (!more_work)
 break;
}

Does not terminate on
Nvidia and AMD platforms!!

This looping idiom used in kernel code

30

Framework bugs

#2 Non-terminating loops

Platforms: Nvidia and AMD

Change while loop to for loop

This looping idiom used in kernel code

while(true) {
for (int i = 0; i < INT_MAX; i++) {
 more_work = false;

 .. // Do computation,
 .. // if more work, set more_work

 if (!more_work)
 break;
}

End value of i is consistent across
platforms

31

Framework bugs

#3 AMD defunct processes

Platforms: AMD on Linux

Long running kernels become defunct and un-killable requiring a
reboot.

Workaround: Switch to Windows OS

32

Portability Issues

12 issues encountered, grouped into categories

• 3 Framework bugs

• 6 Specification limitations

• 3 Programming bugs

33

Specification limitations

#1 GPU watchdogs

Platforms and operating systems handle watchdogs differently.

GPU GPU GPU

Windows Linux (Ubuntu) Chrome OS 34

Specification limitations

#1 GPU watchdogs

Platforms and operating systems handle watchdogs differently.

GPU GPU GPU

Windows Linux (Ubuntu) Chrome OS

Controlled with registry

Watchdog kills entire
OpenCL process

35

Specification limitations

#1 GPU watchdogs

Platforms and operating systems handle watchdogs differently.

GPU GPU GPU

Windows Linux (Ubuntu)

Controlled with registry

Watchdog kills entire
OpenCL process

Controlled in X server settings

Watchdog only kills kernel

Chrome OS 36

Specification limitations

#1 GPU watchdogs

Platforms and operating systems handle watchdogs differently.

GPU GPU GPU

Windows Linux (Ubuntu)

Controlled with registry

Watchdog kills entire
OpenCL process

Controlled in X server settings

Watchdog only kills kernel
Cannot control at all without
recompiling the driver

Chrome OS 37

Specification limitations

#2 Occupancy vs compute units

An OpenCL device has one or more compute units. A
workgroup executes on a single compute unit.

Intel OpenCL Optimisation Guide

38

Specification limitations

#2 Occupancy vs compute units

Persistent thread model (Gupta et al. PIPC’12): once scheduled, a
workgroup is guaranteed to make progress

An OpenCL device has one or more compute units. A
workgroup executes on a single compute unit.

Intel OpenCL Optimisation Guide

39

Specification limitations

#2 Occupancy vs compute units

Persistent thread model (Gupta et al. PIPC’12): once scheduled, a
workgroup is guaranteed to make progress

LonestarGPU applications depend on this

An OpenCL device has one or more compute units. A
workgroup executes on a single compute unit.

Intel OpenCL Optimisation Guide

40

#2 Occupancy vs compute units

Specification limitations

chip compute units PT occupancy

GTX 980 16

Quadro K500 12

Iris 6100 47

HD 5500 24

Radeon R9 28

Radeon R7 8

Mali-T628 4

Mali-T628 2
41

#2 Occupancy vs compute units

Specification limitations

chip compute units PT occupancy

GTX 980 16

Quadro K500 12 12

Iris 6100 47

HD 5500 24

Radeon R9 28

Radeon R7 8

Mali-T628 4 4

Mali-T628 2 2

Compute units are safe
and optimal

42

#2 Occupancy vs compute units

Specification limitations

chip compute units PT occupancy

GTX 980 16 32

Quadro K500 12 12

Iris 6100 47

HD 5500 24

Radeon R9 28 48

Radeon R7 8 16

Mali-T628 4 4

Mali-T628 2 2

Compute units are safe
and optimal

Compute units are safe but
not optimal

43

#2 Occupancy vs compute units

Specification limitations

chip compute units PT occupancy

GTX 980 16 32

Quadro K500 12 12

Iris 6100 47 6

HD 5500 24 3

Radeon R9 28 48

Radeon R7 8 16

Mali-T628 4 4

Mali-T628 2 2

Compute units are safe
and optimal

Compute units are safe but
not optimal

Compute units are not safe

44

Portability Issues

12 issues encountered, grouped into categories

• 3 Framework bugs

• 6 Specification limitations

• 3 Programming bugs

45

Programming bugs

#1 Data-races

Application: LonestarGPU bfs and sssp

Fix: Add additional synchronisation barriers

Quadro K5200 (Nvidia) Intel HD5500

46

Programming bugs

#1 Data-races

Application: LonestarGPU bfs and sssp

Fix: Add additional synchronisation barriers

Quadro K5200 (Nvidia) Intel HD5500

!

Bug was dormant on
Nvidia but caused
crashes on Intel

47

Programming bugs

#2 Struct kernel arguments

How to represent a graph:

48

Programming bugs

#2 Struct kernel arguments

• adjacency matrix
• array of edge weights
• number of nodes
• number of edges

How to represent a graph:

49

Programming bugs

#2 Struct kernel arguments

• adjacency matrix
• array of edge weights
• number of nodes
• number of edges

struct Graph

How to represent a graph:

Graphs are large and globally shared
so they go into global memory.

Some struct members are global
memory pointers

50

Programming bugs

#2 Struct kernel arguments
Chip

GTX 980

Quadro K500

Iris 6100

HD 5500

Radeon R9

Radeon R7

Mali-T628

Mali-T628

clSetKernelArg (bfs_kernel, 0,
 sizeof(Graph), &graph1);
 // Execute bfs kernel

51

Programming bugs

#2 Struct kernel arguments
Chip

GTX 980

Quadro K500

Iris 6100

HD 5500

Radeon R9

Radeon R7

Mali-T628

Mali-T628

clSetKernelArg (bfs_kernel, 0,
 sizeof(Graph), &graph1);
 // Execute bfs kernel

52

Programming bugs

#2 Struct kernel arguments

“Arguments to kernel functions that are declared to be a
struct or union do not allow OpenCL objects to be passed as

elements of the struct or union”

Page 176: OpenCL 2.0 specification

53

An experience report on OpenCL portability

• How well is portability evaluated?

• Our experience running applications on 8 GPUs spanning 4 vendors

• Recommendations going forward

54

Going forward

• Conformance tests

• Compiler Fuzzing
• “Many-Core Compiler Fuzzing” PLDI’16, Lidbury et al.

• Memory consistency
• “GPU Concurrency: Weak Behaviours and Programming Assumptions” ASPLOS’15,

Alglave et al.

55

Going forward

• Conformance tests

• Compiler Fuzzing
• “Many-Core Compiler Fuzzing” PLDI’16, Lidbury et al.

• Memory consistency
• “GPU Concurrency: Weak Behaviours and Programming Assumptions” ASPLOS’15,

Alglave et al.

unofficial open source tests?

56

Going forward

• Specification clarifications

• Inter-workgroup execution model
• “A Study of Persistent Threads Style GPU Programming for GPGPU Workloads”, PIPC’12

Gupta et al.

• GPU watchdog

57

Going forward

• Programming tools

• Data-race checkers
• GPUVerify “The Design and Implementation of a Verification Technique for GPU Kernels”,

TOPLAS’15, Betts et al.

• Dynamic analysis tools
• OCLGrind “Oclgrind: an extensible OpenCL device simulator”, IWOCL’15, Price and

McIntosh-Smith

58

Conclusions

• Most applications were able to run cross-platform!

• Many portability challenges

• We believe that as a community we can overcome these challenges
for a more portable OpenCL world!

59

We are hiring
• Postdoctoral researcher in Reliable Many-Core Programming

• Two fully-funded UK/EU PhD studentships on reliability and efficiency
of concurrent and parallel software

• Talk to me, or email (afd@imperial.ac.uk) if you are interested

• About our group: http://multicore.doc.ic.ac.uk

60

mailto:afd@imperial.ac.uk
http://multicore.doc.ic.ac.uk/

Thank You

Tyler Sorensen
http://www.doc.ic.ac.uk/~tsorensen/

Alastair Donaldson
http://multicore.doc.ic.ac.uk/

• Assessed the OpenCL portability evaluation in research
• Surveyed 50 most recent OpenCL papers

• Found portability issues across 8 GPUs (4 Vendors)
• 3 framework bugs, 6 specification limitations, 3 Programming Bugs

• Suggested ways to improve OpenCL portability
• Conformance tests, specification clarifications, testing/verification tools

61

http://www.doc.ic.ac.uk/~tsorensen/

Specification limitations

#4 Floating point accuracy

Application: LonestarGPU DMR

32 bit floating point application successful on Intel

62

Specification limitations

#4 Floating point accuracy

Application: LonestarGPU DMR

32 bit floating point application successful on Intel

32 bit floating point application fails on Nvidia

63

Specification limitations

#5 OS portability

Chip Windows Linux

Radeon R9

Radeon R7

Mali-T628

Mali-T628

64

Specification limitations

#5 OS portability

Chip Windows Linux

Radeon R9

Radeon R7

Mali-T628

Mali-T628

Defunct process bug

65

Specification limitations

#5 OS portability

Chip Windows Linux

Radeon R9

Radeon R7

Mali-T628

Mali-T628

Thus entire OpenCL application (device and host) must be cross platform

Defunct process bug

66

Specification limitations

#1 Memory allocation failures

Platforms: Intel

Host memory allocations can cause device memory allocations to fail

Due to fragmentation

67

Specification limitations

#3 Memory consistency

OpenCL 2.0 atomics allow synchronisation idioms

68

Specification limitations

#3 Memory consistency

OpenCL 2.0 atomics allow synchronisation idioms

Chip OpenCL Version

GTX 980 1.1

Quadro K500 1.1

Mali-T628 1.2

Mali-T628 1.2

No support for OpenCL 2.0!

69

Specification limitations

#3 Memory consistency

Implement our own atomic operations

typedef int atomic_int;

void atomic_store(atomic_int *addr, int val) {
 mem_fence()
 *addr = val;
 mem_fence()
}

70

Specification limitations

#3 Memory consistency

These chips passed our memory consistency unit tests

Chip OpenCL Version

GTX 980 1.1

Quadro K500 1.1

Mali-T628 1.2

Mali-T628 1.2
71

Specification limitations

#3 Memory consistency

Several other (older) chips did not

Chip Vendor OpenCL Version

GTX 480 Nvidia 1.1

Tesla C2075 Nvidia 1.1

HD 4400 Intel 1.2

Radeon HD 7970 AMD 1.2

Radeon HD 6570 AMD 1.2
72

Specification limitations

#3 Memory consistency

Several other (older) chips did not

Chip Vendor OpenCL Version

GTX 480 Nvidia 1.1

Tesla C2075 Nvidia 1.1

HD 4400 Intel 1.2

Radeon HD 7970 AMD 1.2

Radeon HD 6570 AMD 1.2

We did not consider these
chips further

73

Programming bugs

#2 Stability

Application: LonestarGPU DMR

DRM()

Quadro K5200 (Nvidia)

execute application repeatedly

74

Programming bugs

#2 Stability

Application: LonestarGPU DMR

occasional failures
(known by developer
and deemed acceptable)

Due to floating point precision

DRM()

execute application repeatedly

Quadro K5200 (Nvidia)

75

Programming bugs

#2 Stability

Application: LonestarGPU DMR

DRM()

execute application repeatedly

Radeon R9 (AMD)

76

Programming bugs

#2 Stability

Application: LonestarGPU DMR

Fails nearly every iteration
on AMD chips

DRM()

execute application repeatedly

Radeon R9 (AMD)

77

