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Bayesian Machine Learning

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D) =
P (D|θ)P (θ)

P (D)

P (D|θ) likelihood of θ
P (θ) prior probability of θ
P (θ|D) posterior of θ given D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ



Myths and misconceptions about Bayesian methods

• Bayesian methods make assumptions where other methods don’t
All methods make assumptions! Otherwise it’s impossible to predict. Bayesian
methods are transparent in their assumptions whereas other methods are often
opaque.

• If you don’t have the right prior you won’t do well
Certainly a poor model will predict poorly but there is no such thing as
the right prior! Your model (both prior and likelihood) should capture a
reasonable range of possibilities. When in doubt you can choose vague priors
(cf nonparametrics).

• Maximum A Posteriori (MAP) is a Bayesian method
MAP is similar to regularization and offers no particular Bayesian advantages.
The key ingredient in Bayesian methods is to average over your uncertain
variables and parameters, rather than to optimize.



Myths and misconceptions about Bayesian methods

• Bayesian methods don’t have theoretical guarantees
One can often apply frequentist style generalization error bounds to Bayesian
methods (e.g. PAC-Bayes). Moreover, it is often possible to prove convergence,
consistency and rates for Bayesian methods.

• Bayesian methods are generative
You can use Bayesian approaches for both generative and discriminative
learning (e.g. Gaussian process classification).

• Bayesian methods don’t scale well
With the right inference methods (variational, MCMC) it is possible to
scale to very large datasets (e.g. excellent results for Bayesian Probabilistic
Matrix Factorization on the Netflix dataset using MCMC), but it’s true that
averaging/integration is often more expensive than optimization.



Non-parametric Bayesian Models

• Real-world phenomena are complicated and we don’t really believe simple and
inflexible models (e.g. a low-order polynomial or small mixture of Gaussians) can
adequately model them.

• Non-parametric models are designed to be very flexible; many can be derived by
taking the limit as the number of parameters goes to infinity of simpler parametric
models.

• Bayesian inference makes it possible to reason with nonparametric models without
overfitting.

• The effective complexity of the nonparametric model grows with more data.

• Nonparametric Bayesian models are often faster and conceptually easier to
implement since one doesn’t have to compare multiple nested models.



Sparse Matrices



A binary matrix representation for clustering

• Rows are data points

• Columns are clusters

• Since each data point is assigned to one and only one cluster...

• ...the rows sum to one.



More general latent binary matrices

• Rows are data points

• Columns are latent features

• We can think of infinite binary matrices...
...where each data point can now have multiple features, so...
...the rows can sum to more than one.

Another way of thinking about this:

• there are multiple overlapping clusters

• each data point can belong to several clusters simultaneously.



Why?

• Clustering models are restrictive; they do not have distributed or factorial
representations.

• Consider modelling people’s movie preferences (the “Netflix” problem). A movie
might be described using features such as “is science fiction”, “has Charlton
Heston”, “was made in the US”, “was made in 1970s”, “has apes in it”...
Similarly a person may be described as “male”, “teenager”, “British”, “urban”.
These features may be unobserved (latent).

• The number of potential latent features for describing a movie (or person, news
story, image, gene, speech waveform, etc) is unlimited.



From finite to infinite binary matrices

znk = 1 means object n has feature k:

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (znk = 1|α) = E(θk) = α/K
α/K+1, so

as K grows larger the matrix gets sparser.

• So if Z is N × K, the expected number of
nonzero entries is Nα/(1 + α/K) < Nα.

• Even in the K → ∞ limit, the matrix is
expected to have a finite number of non-zero
entries.



Indian buffet process

Dishes

1

2

3

4

5

6

7

8

9

10

11

12

C
us

to
m

er
s

13

14

15

16

17

18

19

20

“Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”

• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes as her plate becomes overburdened.

• The nth customer moves along the buffet, sampling dishes in proportion to their
popularity, serving himself with probability mk/n, and trying a Poisson(α/n)
number of new dishes.

• The customer-dish matrix is our feature matrix, Z.

(Griffiths and Ghahramani, 2006; 2011)



Properties of the Indian buffet process
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Figure 1: Stick-breaking construction for the DP and IBP.

The black stick at top has length 1. At each iteration the

vertical black line represents the break point. The brown

dotted stick on the right is the weight obtained for the DP,

while the blue stick on the left is the weight obtained for

the IBP.

where d  [0, 1) and  > − d. The Pitman-Yor IBP

weights decrease in expectation as a O (k − 1
d ) power-law,

and this may be a better fit for some naturally occurring

data which have a larger number of features with signifi-

cant but small weights [4].

An example technique for the DP which we could adapt to

the IBP is to truncate the stick-breaking construction after a

certain number of break points and to perform inference in

the reduced space. [7] gave a bound for the error introduced

by the truncation in the DP case which can be used here as

well. Let K  be the truncation level. We set µ ( k ) = 0 for
each k > K  , while the joint density of µ ( 1: K  ) is,

p(µ ( 1: K  ) ) =
K   

k = 1

p(µ ( k ) |µ ( k − 1 ) ) (19)

=  K  
µ  

( K  )

K   

k = 1

µ − 1
( k ) I(0 ≤ µ ( K  ) ≤ · · · ≤ µ ( 1 ) ≤ 1)

The conditional distribution of Z given µ ( 1: K  ) is simply
1

p( Z |µ ( 1: K  ) ) =
N 

i = 1

K   

k = 1

µ z i k
( k ) (1 − µ ( k ) )1 − z i k (20)

with z i k = 0 for k > K  . Gibbs sampling in this represen-

tation is straightforward, the only point to note being that

adaptive rejection sampling (ARS) [3] should be used to

sample each µ ( k ) given other variables (see next section).

4 SLICE SAMPLER

Gibbs sampling in the truncated stick-breaking construc-

tion is simple to implement, however the predetermined

truncation level seems to be an arbitrary and unneces-

sary approximation. In this section, we propose a non-

approximate scheme based on slice sampling, which can be

1Note that we are making a slight abuse of notation by using
Z both to denote the original IBP matrix with arbitrarily ordered
columns, and the equivalent matrix with the columns reordered to
decreasing µ’s. Similarly for the feature parameters  ’s.

seen as adaptively choosing the truncation level at each it-

eration. Slice sampling is an auxiliary variable method that

samples from a distribution by sampling uniformly from

the region under its density function [12]. This turns the

problem of sampling from an arbitrary distribution to sam-

pling from uniform distributions. Slice sampling has been

successfully applied to DP mixture models [8], and our ap-

plication to the IBP follows a similar thread.

In detail, we introduce an auxiliary slice variable,

s| Z , µ ( 1: ∞ )  U niform[0, µ  ] (21)

where µ  is a function of µ ( 1: ∞ ) and Z , and is chosen to be
the length of the stick for the last active feature,

µ  = min
 

1, min
k :  i , z i k = 1

µ ( k )

 
. (22)

The joint distribution of Z and the auxiliary variable s is

p(s, µ ( 1: ∞ ) , Z ) = p( Z , µ ( 1: ∞ ) ) p(s| Z , µ ( 1: ∞ ) ) (23)

where p(s| Z , µ ( 1: ∞ ) ) = 1
µ  I(0 ≤ s ≤ µ  ). Clearly, integrat-

ing out s preserves the original distribution over µ ( 1: ∞ ) and

Z , while conditioned on Z and µ ( 1: ∞ ) , s is simply drawn
from (21). Given s, the distribution of Z becomes:

p( Z |x , s, µ ( 1: ∞ ) )  p( Z |x , µ ( 1: ∞ ) ) 1
µ  I(0 ≤ s ≤ µ  ) (24)

which forces all columns k of Z for which µ ( k ) < s to be
zero. Let K  be the maximal feature index with µ ( K  ) > s.
Thus z i k = 0 for all k > K  , and we need only consider

updating those features k ≤ K  . Notice that K  serves

as a truncation level insofar as it limits the computational

costs to a finite amount without approximation.

Let K † be an index such that all active features have in-

dex k < K † (note that K † itself would be an inactive fea-

ture). The computational representation for the slice sam-

pler consists of the slice variables and the first K † features:

 s, K  , K † , Z 1: N , 1: K † , µ ( 1: K † ) ,  1: K †  . The slice sampler
proceeds by updating all variables in turn.

Update s. The slice variable is drawn from (21). If the new
value of s makes K  ≥ K † (equivalently, s < µ ( K † )), then

we need to pad our representation with inactive features

until K  < K †. In the appendix we show that the stick

lengths µ ( k ) for new features k can be drawn iteratively
from the following distribution:

p(µ ( k ) |µ ( k − 1 ) , z : , > k = 0)  exp(  
 N

i = 1
1
i (1 − µ ( k ) ) i )

µ  − 1
( k ) (1 − µ ( k ) ) N I(0 ≤ µ ( k ) ≤ µ ( k − 1 ) ) (25)

We used ARS to draw samples from (25) since it is log-

concave in log µ ( k ) . The columns for these new features

are initialized to z : , k = 0 and their parameters drawn from
their prior  k  H .

Shown in (Griffiths and Ghahramani, 2006):

• It is infinitely exchangeable.

• The number of ones in each row is Poisson(α)

• The expected total number of ones is αN .

• The number of nonzero columns grows as O(α logN).

Additional properties:

• Has a stick-breaking representation (Teh, Görür, Ghahramani, 2007)

• Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan, 2007)



From binary to non-binary latent features

In many models we might want non-binary latent features.

A simple way to generate non-binary latent feature matrices from Z:

F = Z⊗V

where ⊗ is the elementwise (Hadamard) product of two matrices, and V is a matrix
of independent random variables (e.g. Gaussian, Poisson, Discrete, ...).
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A two-parameter generalization of the IBP

znk = 1 means object n has feature k

One-parameter IBP

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

Two-parameter IBP

znk ∼ Bernoulli(θk)

θk ∼ Beta(αβ/K, β)

Properties of the two-parameter IBP

• Number of features per object is Poisson(α). Setting β = 1 reduces to IBP. Parameter β is

feature repulsion, 1/β is feature stickiness.
• Total expected number of features is K̄+ = α

N∑
n=1

β

β + n− 1
−→ αβ logN

• lim
β→0

K̄+ = α and lim
β→∞

K̄+ = Nα
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Posterior Inference in IBPs

P (Z, α|X) ∝ P (X|Z)P (Z|α)P (α)

Gibbs sampling: P (znk = 1|Z−(nk),X, α) ∝ P (znk = 1|Z−(nk), α)P (X|Z)

• If m−n,k > 0, P (znk = 1|z−n,k) =
m−n,k
N

• For infinitely many k such that m−n,k = 0: Metropolis steps with truncation∗ to
sample from the number of new features for each object.
• If α has a Gamma prior then the posterior is also Gamma → Gibbs sample.

Conjugate sampler: assumes that P (X|Z) can be computed.
Non-conjugate sampler: P (X|Z) =

∫
P (X|Z, θ)P (θ)dθ cannot be computed,

requires sampling latent θ as well (e.g. approximate samplers based on (Neal 2000)

non-conjugate DPM samplers).
∗Slice sampler: works for non-conjugate case, is not approximate, and has an
adaptive truncation level using an IBP stick-breaking construction (Teh, et al 2007)

see also (Adams et al 2010).
Deterministic Inference: variational inference (Doshi et al 2009a) parallel inference
(Doshi et al 2009b), beam-search MAP (Rai and Daume 2011), power-EP (Ding et al 2010)



Modelling Data with Indian Buffet Processes

Latent variable model: let X be the N ×D matrix of observed data, and Z be the
N ×K matrix of binary latent features

P (X,Z|α) = P (X|Z)P (Z|α)

By combining the IBP with different likelihood functions we can get different kinds
of models:

• Models for graph structures (w/ Wood, Griffiths, 2006; w/ Adams and Wallach, 2010)

• Models for protein complexes (w/ Chu, Wild, 2006)

• Models for choice behaviour (Görür & Rasmussen, 2006)

• Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2007)

• Sparse latent trait, pPCA and ICA models (w/ Knowles, 2007, 2011)

• Models for overlapping clusters (w/ Heller, 2007)



Nonparametric Binary Matrix Factorization

genes × patients
users × movies

Meeds et al (2007) Modeling Dyadic Data with Binary Latent Factors.



Nonparametric Sparse Latent Factor Models and
Infinite Independent Components Analysis

Model: Y = G(Z⊗X) + E

x ⊗ z

G

y

...

where Y is the data matrix, G is the mixing matrix Z ∼ IBP(α, β) is a mask
matrix, X is heavy tailed sources and E is Gaussian noise.

(w/ David Knowles, 2007, 2011)



Time Series



Infinite hidden Markov models (iHMMs)

In an HMM with K states, the transition
matrix has K ×K elements. Let K →∞.
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• iHMMs introduced in (Beal, Ghahramani and Rasmussen, 2002).

• Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet

processes, and provided a more efficient Gibbs sampler (note: HDP-HMM ≡ iHMM).

• We have recently derived a much more efficient sampler based on Dynamic Programming

(Van Gael, Saatci, Teh, and Ghahramani, 2008). http://mloss.org/software/view/205/

• And we have parallel (.NET) and distributed (Hadoop) implementations

(Bratieres, Van Gael, Vlachos and Ghahramani, 2010).



Infinite HMM: Changepoint detection and video segmentation

Experiment:  Changepoint Detection

� ��� � ���
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(Stepleton, et al 2009)



Markov Indian Buffet Process
and Infinite Factorial Hidden Markov Models
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• Hidden Markov models (HMMs) represent the history of a time series using a
single discrete state variable

• Factorial HMMs (fHMM) are a kind of HMM with a factored state representation
(w/ Jordan, 1997)

• We can extend the Indian Buffet Process to time series and use it to define a
non-parametric version of the fHMM (w/ van Gael, Teh, 2008)



A Picture:
Relations between some models
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Learning Structure of Deep Sparse Graphical Models
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Learning Structure of Deep Sparse Graphical Models
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Learning Structure of Deep Sparse Graphical Models

Zoubin Ghahramani   ::    Cambridge / CMU   ::    36

Multi-Layer Belief Networks
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(w/ Ryan P. Adams, Hanna Wallach, 2010)



Learning Structure of Deep Sparse Graphical Models

Olivetti Faces: 350 + 50 images of 40 faces (64× 64)
Inferred: 3 hidden layers, 70 units per layer.

Reconstructions and Features:

Zoubin Ghahramani   ::    Cambridge / CMU   ::    46

Olivetti: Reconstructions & Features



Learning Structure of Deep Sparse Graphical Models

Fantasies and Activations:

Zoubin Ghahramani   ::    Cambridge / CMU   ::    47

Olivetti: Fantasies & Activations



Covariances



Covariances

Consider the problem of modelling a covariance matrix Σ that can change as a
function of time, Σ(t), or other input variables Σ(x). This is a widely studied
problem in Econometrics.
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Models commonly used are multivariate GARCH, and multivariate stochastic
volatility models, but these only depend on t, and generally don’t scale well.



Generalised Wishart Processes for Covariance modelling

Modelling time- and spatially-varying covariance matrices. Note that covariance
matrices have to be symmetric positive (semi-)definite.

If ui ∼ N , then Σ =
∑ν
i=1 uiu

>
i is s.p.d. and has a Wishart distribution.

We are going to generalise Wishart distributions to be dependent on time or other
inputs, making a nonparametric Bayesian model based on Gaussian Processes (GPs).

So if ui(t) ∼ GP, then Σ(t) =
∑ν
i=1 ui(t)ui(t)

> defines a Wishart process.

This is the simplest form, many generalisations are possible.

(w/ Andrew Wilson, 2010)



Generalised Wishart Process Results
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Generalised Wishart Process Results

• GWP can learn the GP kernel from data and accommodate dependence on time
and other covariates.

• Scales well to high-dimensional data using MCMC inference based on elliptical
slice sampling.

• Related work: Bru (1991), Gelfand et al (2004), Philipov and Glickman (2006),
Gourieroux et al (2009).



Summary

• Probabilistic modelling and Bayesian inference are two sides of the same coin

• Bayesian machine learning treats learning as a probabilistic inference problem

• Bayesian methods work well when the models are flexible enough to capture
relevant properties of the data

• This motivates non-parametric Bayesian methods, e.g.:

– Indian buffet processes for sparse matrices and latent feature modelling
– Infinite HMMs for time series modelling
– Wishart processes for covariance modelling

http://learning.eng.cam.ac.uk/zoubin

zoubin@eng.cam.ac.uk



Some References

• Adams, R.P., Wallach, H., Ghahramani, Z. (2010) Learning the Structure of Deep Sparse

Graphical Models. AISTATS 2010.

• Beal, M. J., Ghahramani, Z. and Rasmussen, C. E. (2002) The infinite hidden Markov model.

NIPS 14:577–585.

• Bratieres, S., van Gael, J., Vlachos, A., and Ghahramani, Z. (2010) Scaling the iHMM:

Parallelization versus Hadoop. International Workshop on Scalable Machine Learning and

Applications (SMLA-10), 1235–1240.

• Griffiths, T.L., and Ghahramani, Z. (2006) Infinite Latent Feature Models and the Indian Buffet

Process. NIPS 18:475–482.

• Griffiths, T. L., and Ghahramani, Z. (2011) The Indian buffet process: An introduction and

review. Journal of Machine Learning Research 12(Apr):1185–1224.

• Meeds, E., Ghahramani, Z., Neal, R. and Roweis, S.T. (2007) Modeling Dyadic Data with Binary

Latent Factors. NIPS 19:978–983.

• Stepleton, T., Ghahramani, Z., Gordon, G., Lee, T.-S. (2009) The Block Diagonal Infinite Hidden

Markov Model. AISTATS 2009, 552–559.

• Wilson, A.G., and Ghahramani, Z. (2010, 2011) Generalised Wishart Processes.

arXiv:1101.0240v1. and UAI 2011

• van Gael, J., Saatci, Y., Teh, Y.-W., and Ghahramani, Z. (2008) Beam sampling for the infinite

Hidden Markov Model. ICML 2008, 1088-1095.

• van Gael, J and Ghahramani, Z. (2010) Nonparametric Hidden Markov Models. In Barber, D.,

Cemgil, A.T. and Chiappa, S. Inference and Learning in Dynamic Models. CUP.


