Nonparametric Bayesian Models for
Sparse Matrices and Covariances

Zoubin Ghahramani

Department of Engineering
University of Cambridge, UK

zoubin@eng.cam.ac.uk
http://learning.eng.cam.ac.uk/zoubin/

Bayes 250
Edinburgh 2011



Bayesian Machine Learning

Everything follows from two simple rules:
Sum rule: P(x)=>_,P(x,y)
Product rule: P(x,y) = P(x)P(y|x)
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Prediction:
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Model Comparison:
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Myths and misconceptions about Bayesian methods

e Bayesian methods make assumptions where other methods don’t
All methods make assumptions! Otherwise it’s impossible to predict. Bayesian
methods are transparent in their assumptions whereas other methods are often
opaque.

e If you don’t have the right prior you won’t do well
Certainly a poor model will predict poorly but there is no such thing as
the right prior! Your model (both prior and likelihood) should capture a
reasonable range of possibilities. When in doubt you can choose vague priors
(cf nonparametrics).

e Maximum A Posteriori (MAP) is a Bayesian method
MAP is stmilar to reqularization and offers no particular Bayesian advantages.
The key ingredient in Bayesian methods is to average over your uncertain
variables and parameters, rather than to optimaize.



Myths and misconceptions about Bayesian methods

e Bayesian methods don’t have theoretical guarantees
One can often apply frequentist style generalization error bounds to Bayesian
methods (e.g. PAC-Bayes). Moreover, it is often possible to prove convergence,
consistency and rates for Bayesian methods.

e Bayesian methods are generative
You can use Bayesian approaches for both generative and discriminative
learning (e.g. Gaussian process classification).

e Bayesian methods don’t scale well
With the right inference methods (variational, MCMC) it is possible to
scale to very large datasets (e.g. excellent results for Bayesian Probabilistic
Matriz Factorization on the Netfliz dataset using MCMC'), but it’s true that
averaging/integration is often more expensive than optimization.



Non-parametric Bayesian Models

Real-world phenomena are complicated and we don't really believe simple and
inflexible models (e.g. a low-order polynomial or small mixture of Gaussians) can
adequately model them.

Non-parametric models are designed to be very flexible; many can be derived by
taking the limit as the number of parameters goes to infinity of simpler parametric
models.

Bayesian inference makes it possible to reason with nonparametric models without
overfitting.

The effective complexity of the nonparametric model grows with more data.

Nonparametric Bayesian models are often faster and conceptually easier to
iImplement since one doesn’'t have to compare multiple nested models.



Sparse Matrices



A binary matrix representation for clustering
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Rows are data points
Columns are clusters
Since each data point is assigned to one and only one cluster...

...the rows sum to one.



More general latent binary matrices

e Rows are data points
e Columns are latent features

e We can think of infinite binary matrices...
...where each data point can now have multiple features, so...
...the rows can sum to more than one.

Another way of thinking about this:

e there are multiple overlapping clusters

e cach data point can belong to several clusters simultaneously.



Why?

e Clustering models are restrictive; they do not have distributed or factorial
representations.

e Consider modelling people's movie preferences (the “Netflix" problem). A movie
might be described using features such as “is science fiction”, “has Charlton
Heston”, “was made in the US", "was made in 1970s”, “has apes in it"...
Similarly a person may be described as “male”, “teenager’, “British”, “urban”.
These features may be unobserved (latent).

e The number of potential latent features for describing a movie (or person, news
story, image, gene, speech waveform, etc) is unlimited.



From finite to infinite binary matrices

Znk = 1 means object n has feature k:

Znk ~ Bernoulli(6y)

0 ~ Beta(a/K,1)

e Note that P(znx = 1|a) = E(0)) = 7457, 50

as K grows larger the matrix gets sparser.

e So if Z is N x K, the expected number of
nonzero entries is Na /(1 + a/K) < Na.

e Even iIn the K — oo limit, the matrix is
expected to have a finite number of non-zero
entries.



Indian buffet process
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i
:

e First customer starts a

t the left of the buffet, and takes a serving from each dish,

stopping after a Poisson(a) number of dishes as her plate becomes overburdened.

e The nth customer moves along the buffet, sampling dishes in proportion to their
popularity, serving himself with probability my/n, and trying a Poisson(a/n)

number of new dishes.
e [ he customer-dish ma

trix i1s our feature matrix, Z.

(Griffiths and Ghahramani, 2006; 2011)



Properties of the Indian buffet process
11 (N — my)!(my — 1)!
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Figure 1: Stick-breaking construction for the DP and IBP.
] ) The black stick at top has length 1. At each iteration the
e ' T ' vertical black line represents the break point. The brown

features (dishes) dotted stick on the right is the weight obtained for the DP,

Shown in (Griffiths and Ghahramani, 2006): gﬁl};;he blue stick on the left is the weight obtained for

e |t is infinitely exchangeable.

e The number of ones in each row is Poisson(«)

e The expected total number of ones is aV.

e The number of nonzero columns grows as O(alog N).

Additional properties:

e Has a stick-breaking representation (Teh, Goriir, Ghahramani, 2007)
e Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan, 2007)



From binary to non-binary latent features

In many models we might want non-binary latent features.

A simple way to generate non-binary latent feature matrices from Z:

F=2%V

where ® is the elementwise (Hadamard) product of two matrices, and V is a matrix
of independent random variables (e.g. Gaussian, Poisson, Discrete, ...).
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A two-parameter generalization of the IBP

Znk = 1 means object n has feature k

One-parameter IBP Two-parameter IBP

Znk ~ Bernoulli(6y) Znk ~ Bernoulli(6y)
0 ~ Beta(a/K,1) 0 ~ Beta(af/K, )

Properties of the two-parameter IBP

e Number of features per object is Poisson(a). Setting 8 = 1 reduces to IBP. Parameter (3 is
feature repulsion, 1/ is feature stickiness. N ;

e Total expected number of features is K1 = « Z >y af log N

e limK, =aand lim K, = Na o Btn—1
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Posterior Inference in IBPs
P(Z,a|X) x P(X|Z)P(Z|a)P(a)
Gibbs sampling:  P(2pr = 1|Z_ (), X, ) o< P21 = 1|Z_ (1), @) P(X]Z)

m_n.k

N

o fm_pp >0, Plzgp=1lz_,;) =

e For infinitely many k& such that m_,, , = 0: Metropolis steps with truncation® to
sample from the number of new features for each object.
e |f o has a Gamma prior then the posterior is also Gamma — Gibbs sample.

Conjugate sampler: assumes that P(X|Z) can be computed.

Non-conjugate sampler: P(X|Z) = [ P(X|Z,0)P(0)df cannot be computed,
requires sampling latent 6 as well (e.g. approximate samplers based on (Neal 2000)
non-conjugate DPM samplers).

*Slice sampler: works for non-conjugate case, is not approximate, and has an
adaptive truncation level using an IBP stick-breaking construction (Teh, et al 2007)
see also (Adams et al 2010).

Deterministic Inference: variational inference (Doshi et al 2009a) parallel inference
(Doshi et al 2009b), beam-search MAP (Rai and Daume 2011), power-EP (Ding et al 2010)



Modelling Data with Indian Buffet Processes

Latent variable model: let X be the N x D matrix of observed data, and Z be the
N x K matrix of binary latent features

P(X,Z|a) = P(X|Z)P(Z|a)

By combining the IBP with different likelihood functions we can get different kinds
of models:

e Models for graph structures (w/ Wood, Griffiths, 2006; w/ Adams and Wallach, 2010)

e Models for protein complexes (w/ Chu, Wild, 2006)
e Models for choice behaviour (Goriir & Rasmussen, 2006)
e Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2007)
e Sparse latent trait, pPCA and ICA models (w/ Knowles, 2007, 2011)

e Models for overlapping clusters (w/ Heller, 2007)



Nonparametric Binary Matrix Factorization

genes X patients
users X movies

(A)

Figure 5: Gene expression results. (A) The top-left is X sorted according to contiguous features in
the final U and V in the Markov chain. The bottom-left is V7 and the top-right is U. The bottom-

right is W. (B) The same as (A). but the expected value of X, X = UWV ™. We have hilighted
regions that have both u;; and v; on. For clarity, we have only shown the (at most) two largest
contiguous regions for each feature pair.

(B)

Meeds et al (2007) Modeling Dyadic Data with Binary Latent Factors.



Nonparametric Sparse Latent Factor Models and
Infinite Independent Components Analysis

Model: Y=G(Z®X)+E
where Y is the data matrix, G is the mixing matrix Z ~ IBP(«, 3) is a mask
matrix, X is heavy tailed sources and E is Gaussian noise.
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Fig. 1. True and inferred Z and algorithm convergence.

(w/ David Knowles, 2007, 2011)



Time Series



Infinite hidden Markov models (iHMMs)

In an HMM with K states, the transition G)—>
matrix has K x K elements. Let K — 0.
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e iHMMs introduced in (Beal, Ghahramani and Rasmussen, 2002).

e Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet
processes, and provided a more efficient Gibbs sampler (note: HDP-HMM = iHMM).

O

e \We have recently derived a much more efficient sampler based on Dynamic Programming
(Van Gael, Saatci, Teh, and Ghahramani, 2008). http://mloss.org/software/view/205/

e And we have parallel (.NET) and distributed (Hadoop) implementations
(Bratieres, Van Gael, Vlachos and Ghahramani, 2010).



Infinite HMM: Changepoint detection and video segmentation
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Markov Indian Buffet Process
and Infinite Factorial Hidden Markov Models
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e Hidden Markov models (HMMs) represent the history of a time series using a
single discrete state variable

(3)

e Factorial HMMs (fHMM) are a kind of HMM with a factored state representation
(w/ Jordan, 1997)

e We can extend the Indian Buffet Process to time series and use it to define a
non-parametric version of the fHMM (w/ van Gael, Teh, 2008)



A Picture:
Relations between some models
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Learning Structure of Deep Sparse Graphical Models
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Learning Structure of Deep Sparse Graphical Models
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Learning Structure of Deep Sparse Graphical Models




Learning Structure of Deep Sparse Graphical Models

(w/ Ryan P. Adams, Hanna Wallach, 2010)



Learning Structure of Deep Sparse Graphical Models

Olivetti Faces: 350 + 50 images of 40 faces (64 x 64)
Inferred: 3 hidden layers, 70 units per layer.

Reconstructions and Features:




Learning Structure of Deep Sparse Graphical Models

Fantasies and Activations:




Covariances



Covariances

Consider the problem of modelling a covariance matrix > that can change as a
function of time, 3(t), or other input variables ¥(z). This is a widely studied

problem in Econometrics.
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Models commonly used are multivariate GARCH, and multivariate stochastic
volatility models, but these only depend on ¢, and generally don't scale well.



Generalised Wishart Processes for Covariance modelling

Modelling time- and spatially-varying covariance matrices. Note that covariance
matrices have to be symmetric positive (semi-)definite.

If u; ~ N, then X = Z;’Zl u;u; is s.p.d. and has a Wishart distribution.

We are going to generalise Wishart distributions to be dependent on time or other
inputs, making a nonparametric Bayesian model based on Gaussian Processes (GPs).

So if u;(t) ~ GP, then X(¢) = Y7, w;(t)u;(t)" defines a Wishart process.

This is the simplest form, many generalisations are possible.

a/////

(w/ Andrew Wilson, 2010)



Generalised Wishart Process Results

w H (6] ()]
Covariance

Marginal Variance
n

0 100 200 300 0 100 200 300 0 100 200 300

Legend: Truth, GWP, WP, MGARCH

The GWP significantly outperforms its competitors (in MSE and
likelihood) on simulated and financial data, even in lower dimensions
(<5) and on data that is especially suited to GARCH.

On 5D equity index data, using a GWP with a squared exponential
covariance function, forecast log likelihoods are:
GWP: 2930, WHP: 1710, BEKK MGARCH: 2760.



Generalised Wishart Process Results

Table 1: Error for predicting multivariate volatility.
MSE Historical MSE Forecast [ Forecast

PERIODIC (2D):

GWP 0.0841 0.118 -257
WP 0.458 3.04 - 286
MGARCH 0.913 1.95 -970
EXCHANGE (3D):

GWP 3.49 x10-8 4.32 x10-8 2020
WP 3.49 x 108 6.28 x 108 1950
MGARCH 3.56 x 10-8 4.45 x 10 -8 2050
EQUITY (5D):

GWP 7.01 x10-8 1.46 x10-7 2930
WP 9.89 x 10-8 2.93 x 107 1710
MGARCH 16.7 x 10-8 7.34 x10-7 2760

e GWP can learn the GP kernel from data and accommodate dependence on time
and other covariates.

e Scales well to high-dimensional data using MCMC inference based on elliptical
slice sampling.

e Related work: Bru (1991), Gelfand et al (2004), Philipov and Glickman (2006),
Gourieroux et al (2009).



Summary

Probabilistic modelling and Bayesian inference are two sides of the same coin
Bayesian machine learning treats learning as a probabilistic inference problem

Bayesian methods work well when the models are flexible enough to capture
relevant properties of the data

This motivates non-parametric Bayesian methods, e.g.:

— Indian buffet processes for sparse matrices and latent feature modelling
— Infinite HMMs for time series modelling
— Wishart processes for covariance modelling

http://learning.eng.cam.ac.uk/zoubin
zoubin@eng.cam.ac.uk




Some References

Adams, R.P., Wallach, H., Ghahramani, Z. (2010) Learning the Structure of Deep Sparse
Graphical Models. AISTATS 2010.

Beal, M. J., Ghahramani, Z. and Rasmussen, C. E. (2002) The infinite hidden Markov model.
NIPS 14:577-585.

Bratieres, S., van Gael, J., Vlachos, A., and Ghahramani, Z. (2010) Scaling the iHMM:
Parallelization versus Hadoop. International Workshop on Scalable Machine Learning and
Applications (SMLA-10), 1235-1240.

Griffiths, T.L., and Ghahramani, Z. (2006) Infinite Latent Feature Models and the Indian Buffet
Process. NIPS 18:475-482.

Griffiths, T. L., and Ghahramani, Z. (2011) The Indian buffet process: An introduction and
review. Journal of Machine Learning Research 12(Apr):1185-1224.

Meeds, E., Ghahramani, Z., Neal, R. and Roweis, S.T. (2007) Modeling Dyadic Data with Binary
Latent Factors. NIPS 19:978-983.

Stepleton, T., Ghahramani, Z., Gordon, G., Lee, T.-S. (2009) The Block Diagonal Infinite Hidden
Markov Model. AISTATS 2009, 552-559.

Wilson, A.G., and Ghahramani, Z. (2010, 2011) Generalised Wishart Processes.
arXiv:1101.0240v1. and UAI 2011

van Gael, J., Saatci, Y., Teh, Y.-W., and Ghahramani, Z. (2008) Beam sampling for the infinite
Hidden Markov Model. ICML 2008, 1088-1095.

van Gael, J and Ghahramani, Z. (2010) Nonparametric Hidden Markov Models. In Barber, D.,
Cemgil, A.T. and Chiappa, S. Inference and Learning in Dynamic Models. CUP.



