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Let S = (Ak)k2K be a signature, i.e. family of sets. We call k 2 K an operation and the set Ak its arity, which
may be empty. Consider the language of I/O and nondeterminism inductively defined as follows:

M ::= inputk(Mi)i2Ak | M or M

Informally: the command inputk(Mi)i2Ak first prints k. Then, if the user inputs i 2 Ak, it proceeds to execute
Mi. The command M or M 0 nondeterministically chooses to execute M or M 0.

Write P+
f for the finite nonempty powerset monad on Set, whose Eilenberg-Moore algebras are semilattices.

Write HS for the endofunctor X 7!
P

k2KXAk , whose algebras are S-algebras. Let Q be the set of commands;
the “medium-step” operational semantics [4] is the evident map ⇣ : Q ! P+

f HSQ. When (k, (Ni)i2Ak) 2 ⇣M , we
write M +k and also M +k  i Ni for each i 2 Ak.

Clearly, bisimilarity is the least congruence generated by the basic laws of or, viz. commutativity, associativity
and idempotency. (This gives a sum of monads [3].) We now consider trace equivalence. A trace s is a finite or
infinite sequence k0, i0, k1, i1, . . ., where kn 2 K and in 2 Akn for each n. A command M has this trace s when
M0 +k0  i0 M1 +k1  i1 · · · , for some sequence of commands M = M0, M1, . . .. Commands in our language have
no infinite traces, because (R, ⇣) is a well-founded P+

f HS-coalgebra [6]. Two commands with the same traces are
trace equivalent. Plotkin [private communication] showed this to be the congruence generated by the basic laws of
or and commutativity, for all k 2 K, of or with inputk:

8M,M 0 2 RAk . inputk(Mi or M 0
i)i2Ak ⌘ inputk(Mi)i2Ak or inputk(M

0
i)i2Ak

A trace process D is a prefix-closed set of odd-length traces. The even-length traces enabled by D are given by
en(D) = {"} [ {ski | sk 2 D, i 2 Ak}, and for t 2 en(D) its response set is tD = {k 2 K | tk 2 D}. A tree is a
trace process D such that tD is singleton for all t 2 en(D). A tree is well-founded when no infinite trace has all its
odd-length prefixes in D. As is well-known, the set of well-founded trees gives an initial HS-algebra, whilst the set
of all trees gives a final HS-coalgebra.

A trace process is finitely nondeterministic, total and König when tD is finite and nonempty for all t 2 en(D),
and no infinite trace has all its odd-length prefixes in D. Let FNTK be the set of all such trace processes. The
trace set of each command in our language—indeed, of any state of a well-founded P+

f HS-coalgebra—has these
properties. Plotkin’s argument shows the converse: each D 2 FNTK is the trace set of a command. Thus FNTK is
initial among semilattice S-algebras in which S-operations commute with _, and hence S-operations are monotone.
(This gives a tensor of monads [1, 2, 3].)

We have developed Plotkin’s result in two directions.

• Replacing nondeterministic choice by probabilistic choice M orp M 0, where p 2 [0, 1]. Then the corresponding
result holds, with essentially the same proof.

• Replacing finite nondeterminism by countable nondeterminism (or greater). A similar result holds, with a
quite di↵erent proof. A trace process is countably nondeterministic and well-foundedly total when, for all
t 2 en(D), the set tD is countable and there is a well-founded tree E such that {ts | s 2 E} ✓ D, cf. [5]. The
trace set of every command has these properties; conversely, every such trace process is the trace set of some
command. The set of such trace processes is initial among semilattice S-algebras with countable suprema, in
which S-operations commute with countable supremum.
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