Trace semantics of well-founded processes via commutativity

Paul Blain Levy, University of Birmingham Joint work with Nathan Bowler, Universität Hamburg

Let $S = (A_k)_{k \in K}$ be a signature, i.e. family of sets. We call $k \in K$ an operation and the set A_k its arity, which may be empty. Consider the language of I/O and nondeterminism inductively defined as follows:

 $M ::= \operatorname{input}_k(M_i)_{i \in A_k} \mid M \text{ or } M$

Informally: the command $\operatorname{input}_k(M_i)_{i \in A_k}$ first prints k. Then, if the user inputs $i \in A_k$, it proceeds to execute M_i . The command M or M' nondeterministically chooses to execute M or M'.

Write $\mathcal{P}_{\mathsf{f}}^+$ for the finite nonempty powerset monad on **Set**, whose Eilenberg-Moore algebras are semilattices. Write $H^{\mathcal{S}}$ for the endofunctor $X \mapsto \sum_{k \in K} X^{A_k}$, whose algebras are \mathcal{S} -algebras. Let Q be the set of commands; the "medium-step" operational semantics [4] is the evident map $\zeta : Q \to \mathcal{P}_{\mathsf{f}}^+ H^{\mathcal{S}}Q$. When $(k, (N_i)_{i \in A_k}) \in \zeta M$, we write $M \Downarrow_k$ and also $M \Downarrow_k \stackrel{i}{\rightsquigarrow} N_i$ for each $i \in A_k$.

Clearly, bisimilarity is the least congruence generated by the basic laws of or, viz. commutativity, associativity and idempotency. (This gives a sum of monads [3].) We now consider trace equivalence. A trace s is a finite or infinite sequence $k_0, i_0, k_1, i_1, \ldots$, where $k_n \in K$ and $i_n \in A_{k_n}$ for each n. A command M has this trace s when $M_0 \Downarrow_{k_0} \stackrel{i_0}{\searrow} M_1 \Downarrow_{k_1} \stackrel{i_1}{\swarrow} \cdots$, for some sequence of commands $M = M_0, M_1, \ldots$ Commands in our language have no infinite traces, because (R, ζ) is a well-founded $\mathcal{P}_{\mathsf{f}}^+ H^{\mathcal{S}}$ -coalgebra [6]. Two commands with the same traces are trace equivalent. Plotkin [private communication] showed this to be the congruence generated by the basic laws of or and commutativity, for all $k \in K$, of or with input_k:

$$\forall M, M' \in R^{A_k}$$
. $\operatorname{input}_k(M_i \text{ or } M'_i)_{i \in A_k} \equiv \operatorname{input}_k(M_i)_{i \in A_k} \text{ or } \operatorname{input}_k(M'_i)_{i \in A_k}$

A trace process D is a prefix-closed set of odd-length traces. The even-length traces enabled by D are given by $en(D) = \{\varepsilon\} \cup \{ski \mid sk \in D, i \in A_k\}$, and for $t \in en(D)$ its response set is $t^D = \{k \in K \mid tk \in D\}$. A tree is a trace process D such that t^D is singleton for all $t \in en(D)$. A tree is well-founded when no infinite trace has all its odd-length prefixes in D. As is well-known, the set of well-founded trees gives an initial H^S -algebra, whilst the set of all trees gives a final H^S -coalgebra.

A trace process is finitely nondeterministic, total and König when t^D is finite and nonempty for all $t \in en(D)$, and no infinite trace has all its odd-length prefixes in D. Let FNTK be the set of all such trace processes. The trace set of each command in our language—indeed, of any state of a well-founded $\mathcal{P}_f^+ H^S$ -coalgebra—has these properties. Plotkin's argument shows the converse: each $D \in \mathsf{FNTK}$ is the trace set of a command. Thus FNTK is initial among semilattice S-algebras in which S-operations commute with \lor , and hence S-operations are monotone. (This gives a *tensor of monads* [1, 2, 3].)

We have developed Plotkin's result in two directions.

- Replacing nondeterministic choice by probabilistic choice $M \text{ or}_p M'$, where $p \in [0, 1]$. Then the corresponding result holds, with essentially the same proof.
- Replacing finite nondeterminism by countable nondeterminism (or greater). A similar result holds, with a quite different proof. A trace process is *countably nondeterministic and well-foundedly total* when, for all $t \in en(D)$, the set t^D is countable and there is a well-founded tree E such that $\{ts \mid s \in E\} \subseteq D$, cf. [5]. The trace set of every command has these properties; conversely, every such trace process is the trace set of some command. The set of such trace processes is initial among semilattice S-algebras with countable suprema, in which S-operations commute with countable supremum.

References

- [1] P. Freyd. Algebra valued functors in general and tensor products in particular. Colloquium Mathematicae, 14(1), 1966.
- [2] S. Goncharov and L. Schröder. Powermonads and tensors of unranked effects. In LICS, 2011.
- [3] J. M. E. Hyland, G. D. Plotkin, and A. J. Power. Combining effects: sum and tensor. TCS, 357, 2006.
- [4] G. D. Plotkin and A. J. Power. Adequacy for algebraic effects. LNCS, 2030, 2001.
- [5] A. W. Roscoe. Unbounded non-determinism in CSP. Journal of Logic and Computation, 3(2), 1993.
- [6] P. Taylor. Practical Foundations of Mathematics. Cambridge University Press, 1999.