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Why Diagrams?

• Great when we have parallel and 
sequential composition 

• Essential for talking about interacting 
algebraic and coalgebraic things 

• Different kinds of diagram give different 
kinds of monoidal category
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Interaction,  
or process, or  
state change, or ...
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No lines are drawn for I in the graphical notation:

Monoidal categories have a special unit object called I which is 
a left and right identity for the tensor:

⇥ : I ⇥ A �† : A ⇥ I �† � ⇥ : I ⇥ I

I �A = A = A� I

idI � f = f = f � idI

Monoidal Categories

⇥ : I ⇥ A �† : A ⇥ I �† � ⇥ : I ⇥ I
⇥ : I ⇥ A �† : A ⇥ I �† � ⇥ : I ⇥ I

⇥ : I ⇥ A �† : A ⇥ I �† � ⇥ : I ⇥ I

⇥ : I ⇥ A �† : A ⇥ I �† � ⇥ : I ⇥ I
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Thm: one diagram can be deformed to another iff their 
denotations are equal by the structural equations of the category.

Graphical Calculus Theorem
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YES : symmetric monoidal — diagrams are DAGs

Are wires allowed to cross?
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YES, BUT : braided monoidal 
— diagrams are framed tangles
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No :  (planar) monoidal — diagrams are planar DAGs

Are wires allowed to cross?

Crossing the streams



Monoidal Theories
Syntactic presentation of a diagrammatic theory: 
!
!
!
!
!
!
!
NB : a PRO(P) is a (symmetric) monoidal category 
where the wires don’t have types.

(⌃, E)Generators  
 symbols with 

arity and coarity

Relations 
 equations between 
terms of same type



Example: commutative 
monoids

The PROP of commutative monoids  
!
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!

of directed equations (f
2

, f
1

) æ (f Õ
1

, f Õ
2

) commuting morphisms of T
2

past those
of T

1

. The composite PROP T
1
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T

1

+ T
2

with the additional equations of ⁄.
Example 1.4. As a simple example we can view P as a PRO with a single
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Example : the ZX-calculus
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Figure 2: Interior vertices of diagrams

• X vertices with m inputs and n outputs, labelled by an angle – œ [0, 2fi);
these are these are denoted Xm

n (–), and shown graphically as (dark) red
circles,

• H (or Hadamard) vertices, restricted to degree 2; shown as squares.

If a X or Z vertex has – = 0 then the label is entirely omitted. The allowed
vertices are shown in Figure ??.

Since the inputs and outputs of of a diagram are totally ordered, we can
identify them with natural numbers and speak of the kth input, etc.

Remark 3.4. When a vertex occurs inside the graph, the distinction between
inputs and outputs is purely conventional: one can view them simply as vertices
of degree n + m; however, this distinction allows the semantics to be stated more
directly, see below.

The collection of diagrams forms a compact category in the obvious way: the
objects are natural numbers and the arrows m æ n are those diagrams with
m inputs and n outputs; composition g ¶ f is formed by identifying the inputs
of g with the outputs of f and erasing the corresponding vertices; f ¢ g is the
diagram formed by the disjoint union of f and g with If ordered before Ig, and
similarly for the outputs. This is basically the free (self-dual) compact category
generated by the arrows shown in Figure ??.

We can make this category †-compact by specifying that f† is the same
diagram as f , but with the inputs and outputs exchanged, and all the angles
negated.

This construction yields a category that does not incorporate the algebraic
structure of strongly complementary observables. To obtain the desired category
we must quotient by the equations shown in Figure ??. We denote the category
so-obtained by D.

Remark 3.5. The equations shown in Figure ?? are not exactly those described
in Sections ?? and ??, however they are equivalent to them. We shall therefore,
on occasion, use properties discussed earlier as derived rules in computations.

Since D is a monoidal category we can assign an interpretation to any diagram
by providing a monoidal functor from D to any other monoidal category. Since
we interested in quantum mechanics, the obvious target category is fdHilb.

Definition 3.6. Let J·K : D æ fdHilb be a symmetric monoidal functor defined
on objects by

J1K = C2
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Quantum algorithms are sequences of 
abstract operations, performed on non-
existent computers. They are in obvious 
need of categorical semantics.
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Pavlovic (2009,2012)3.2 Abstraction in monoidal categories

Given a monoidal category C and a chosen object A in it, we want to freely adjoin a variable arrow I
x
→ A and build the

polynomial monoidal category C[x : X ]. Like before, C[x:X ] can be built syntactically, as the free symmetric monoidal
category over the graph spanned by C and I

x
→ A, factored by the equations between the arrows of C. Although this is

not a very effective description, it does show that the polynomial category C[x:X] can in this case be quite complicated4.
Moreover, in contrast with the cartesian (closed) case, the inclusion ad : C −→ C[x:X] does not have an adjoint in general,
and thus does not support abstraction. The task is now to extend the polynomial construction to support abstraction. We
follow, refine and strengthen the results from [30].

Definition 3.2 Let C be a monoidal category, and E a set of well typed equations between some polynomial arrows in
C[x:X]. A monoidal extension is the monoidal category C[x:X; E] = C[x:X]/E obtained by imposing the equations E on
C[x:X], together with all equations that make it into a monoidal category. Every monoidal extension comes with the obvious
ioof ad : C −→ C[x:X; E].

A substitution functor between monoidal extensions is a (strict) monoidal ioof F : C[x:X; E] −→ C[y :Y ; D].

We denote by ExtC the category of monoidal extensions of C, with the substitution functors between them.

Definition 3.3 A (monoidal) abstraction over a monoidal extension ad : C −→ C[x:X; E] is the adjunction ab ⊣ ad such
that ab(A ⊗ B) = ab(A) ⊗ B, and the unit of the adjunction h : Id −→ ad ◦ ab satisfies hA = x ⊗ A. We denote by AbsC

the subcategory of ExtC spanned by the monoidal extensions that support abstraction.

Notation and terminology. Since the abstraction notation ab ⊣ ad : C −→ C[x:X; E] is generic, we often elide the
structure and refer to an abstraction as C[x:X ; E].

Theorem 3.4 The category AbsC of monoidal abstractions is equivalent with the category C× of commutative comonoids in
C. Each abstraction is isomorphic with the Kleisli adjunction for the comonad induced by the corresponding comonoid.

Proof (sketch). Given a commutative comonoid (X, ∆,⊤) in C, we construct the abstraction ab ⊣ ad : C −→ C[x :X ; E] as
follows. Let

E = E(∆,⊤)

be the set of equations

x⊗ x⊗ · · ·⊗ x︸ ︷︷ ︸
n times

= ∆
n ◦ x for n = 0, 1, 2 . . .

where ∆n : X −→ X⊗n is defined inductively:

∆
0 = ⊤ ∆

1 = idX ∆
2 = ∆

∆
i+1 = (∆×X⊗i−1) ◦ ∆

i

This determines the extension ad : C −→ C[x :X ; E]. Using the symmetry, it follows that every polynomial ϕ(x) ∈ C[x :
X ; E] must satisfy the equation

4E.g., Rel[x] is not a locally small category.
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∆

=ϕ(x) ϕ ◦ (x ⊗A)

Setting κx.ϕ(x) = ϕ, define

ab : C[x:X ; E] −→ C

A %−→ X ⊗A

ϕ(x) %−→ (X ⊗ κx.ϕ(x)) ◦ (∆⊗A) (6)

The adjunction correspondence, with ad(B) = B, is now

C
(
ab(A), B

)
C[x:X ; E]

(
A, ad(B)

)

(
κx. ϕ(x)

)
◦

(
x⊗A) = ϕ(x)

κx.
(
f ◦ (x⊗ A)

)
= f

κx.

(−)◦(x⊗A)

(η-rule
(β-rule

∼=

The other way around, given an abstraction ab ⊣ ad : C −→ C[x:X ; E], the conditions fromDef. 3.3 imply that h(A) = x⊗A
and ab(A) = X ⊗A. With the transposition κx as above, the comonoid structure must be

⊤

∆ =

=

κx.

κx.

X X

idI

The arrow part of the claimed equivalence AbsC ≃ C× follows in one direction from the fact that any comonoid homomor-
phism f : Y → X induces a unique ioof F : C[x:X] −→ C[y :Y ], mapping ϕ(x) to Fϕ(x) = ϕ(f ◦ y). Since every
structure-preserving functor F is easily seen to be induced by the comonoid homomorphism f = κy. Fx in this way, the
bijective correspondence Abs (C[x:X], C[y :Y ]) ∼= C×(X, Y ) is established.

The isomorphism C[x : X ] ∼= C[X], where C[X] is the Kleisli category for the comonoid X , is obtained by viewing the
transpositions κx.(−) and (−) ◦ (x⊗A) as functors. More precisely, this isomorphism is realized by the following ioofs:

K : C[x:X ] −→ C[X] H : C[X] −→ C[x:X ]

ϕ(x) %−→ κx. ϕ(x) f %−→ f ◦ (x⊗A)

The fact that H ◦ K = id is just the β-rule; the fact that K ◦ H = id is the η-rule. Proving the functoriality of K and
H , and the fact that they commute with the abstraction structure ab ⊣ ad : C −→ C[x : X ; E] and the Kleisli adjunction
V ⊣ G : C −→ C[X] is an instructive exercise. !

Remarks. (a) The upshot of the preceding theorem is that the set of equations E in C[x :X ; E] determines the comonoid
structure (∆,⊤) overX ; and vice versa: the comonoid structure (∆,⊤) determines the equationsE = E(∆,⊤), as in the above
proof. Just like we often speak of a ”comonoidX” and leave the actual structure (∆,⊤) implicit, we shall often elide E, and
write C[x :X ], or even C[x], whenever the rest of the structure is clear from the context. We shall also blur the distinction
between the comonoid (X, ∆,⊤) and the corresponding comonad, and denote both by X , writing C[X] for the X-Kleisli
category, the C[X] for theX-Eilenberg-Moore category.
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Pavlovic (2009,2012)3.2 Abstraction in monoidal categories

Given a monoidal category C and a chosen object A in it, we want to freely adjoin a variable arrow I
x
→ A and build the

polynomial monoidal category C[x : X ]. Like before, C[x:X ] can be built syntactically, as the free symmetric monoidal
category over the graph spanned by C and I

x
→ A, factored by the equations between the arrows of C. Although this is

not a very effective description, it does show that the polynomial category C[x:X] can in this case be quite complicated4.
Moreover, in contrast with the cartesian (closed) case, the inclusion ad : C −→ C[x:X] does not have an adjoint in general,
and thus does not support abstraction. The task is now to extend the polynomial construction to support abstraction. We
follow, refine and strengthen the results from [30].

Definition 3.2 Let C be a monoidal category, and E a set of well typed equations between some polynomial arrows in
C[x:X]. A monoidal extension is the monoidal category C[x:X; E] = C[x:X]/E obtained by imposing the equations E on
C[x:X], together with all equations that make it into a monoidal category. Every monoidal extension comes with the obvious
ioof ad : C −→ C[x:X; E].

A substitution functor between monoidal extensions is a (strict) monoidal ioof F : C[x:X; E] −→ C[y :Y ; D].

We denote by ExtC the category of monoidal extensions of C, with the substitution functors between them.

Definition 3.3 A (monoidal) abstraction over a monoidal extension ad : C −→ C[x:X; E] is the adjunction ab ⊣ ad such
that ab(A ⊗ B) = ab(A) ⊗ B, and the unit of the adjunction h : Id −→ ad ◦ ab satisfies hA = x ⊗ A. We denote by AbsC

the subcategory of ExtC spanned by the monoidal extensions that support abstraction.

Notation and terminology. Since the abstraction notation ab ⊣ ad : C −→ C[x:X; E] is generic, we often elide the
structure and refer to an abstraction as C[x:X ; E].

Theorem 3.4 The category AbsC of monoidal abstractions is equivalent with the category C× of commutative comonoids in
C. Each abstraction is isomorphic with the Kleisli adjunction for the comonad induced by the corresponding comonoid.

Proof (sketch). Given a commutative comonoid (X, ∆,⊤) in C, we construct the abstraction ab ⊣ ad : C −→ C[x :X ; E] as
follows. Let

E = E(∆,⊤)

be the set of equations

x⊗ x⊗ · · ·⊗ x︸ ︷︷ ︸
n times

= ∆
n ◦ x for n = 0, 1, 2 . . .

where ∆n : X −→ X⊗n is defined inductively:

∆
0 = ⊤ ∆

1 = idX ∆
2 = ∆

∆
i+1 = (∆×X⊗i−1) ◦ ∆

i

This determines the extension ad : C −→ C[x :X ; E]. Using the symmetry, it follows that every polynomial ϕ(x) ∈ C[x :
X ; E] must satisfy the equation

4E.g., Rel[x] is not a locally small category.
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Setting κx.ϕ(x) = ϕ, define

ab : C[x:X ; E] −→ C

A %−→ X ⊗A

ϕ(x) %−→ (X ⊗ κx.ϕ(x)) ◦ (∆⊗A) (6)

The adjunction correspondence, with ad(B) = B, is now

C
(
ab(A), B

)
C[x:X ; E]

(
A, ad(B)

)

(
κx. ϕ(x)

)
◦

(
x⊗A) = ϕ(x)

κx.
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f ◦ (x⊗ A)

)
= f

κx.

(−)◦(x⊗A)

(η-rule
(β-rule

∼=

The other way around, given an abstraction ab ⊣ ad : C −→ C[x:X ; E], the conditions fromDef. 3.3 imply that h(A) = x⊗A
and ab(A) = X ⊗A. With the transposition κx as above, the comonoid structure must be

⊤

∆ =

=

κx.

κx.

X X

idI

The arrow part of the claimed equivalence AbsC ≃ C× follows in one direction from the fact that any comonoid homomor-
phism f : Y → X induces a unique ioof F : C[x:X] −→ C[y :Y ], mapping ϕ(x) to Fϕ(x) = ϕ(f ◦ y). Since every
structure-preserving functor F is easily seen to be induced by the comonoid homomorphism f = κy. Fx in this way, the
bijective correspondence Abs (C[x:X], C[y :Y ]) ∼= C×(X, Y ) is established.

The isomorphism C[x : X ] ∼= C[X], where C[X] is the Kleisli category for the comonoid X , is obtained by viewing the
transpositions κx.(−) and (−) ◦ (x⊗A) as functors. More precisely, this isomorphism is realized by the following ioofs:

K : C[x:X ] −→ C[X] H : C[X] −→ C[x:X ]

ϕ(x) %−→ κx. ϕ(x) f %−→ f ◦ (x⊗A)

The fact that H ◦ K = id is just the β-rule; the fact that K ◦ H = id is the η-rule. Proving the functoriality of K and
H , and the fact that they commute with the abstraction structure ab ⊣ ad : C −→ C[x : X ; E] and the Kleisli adjunction
V ⊣ G : C −→ C[X] is an instructive exercise. !

Remarks. (a) The upshot of the preceding theorem is that the set of equations E in C[x :X ; E] determines the comonoid
structure (∆,⊤) overX ; and vice versa: the comonoid structure (∆,⊤) determines the equationsE = E(∆,⊤), as in the above
proof. Just like we often speak of a ”comonoidX” and leave the actual structure (∆,⊤) implicit, we shall often elide E, and
write C[x :X ], or even C[x], whenever the rest of the structure is clear from the context. We shall also blur the distinction
between the comonoid (X, ∆,⊤) and the corresponding comonad, and denote both by X , writing C[X] for the X-Kleisli
category, the C[X] for theX-Eilenberg-Moore category.
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x
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polynomial monoidal category C[x : X ]. Like before, C[x:X ] can be built syntactically, as the free symmetric monoidal
category over the graph spanned by C and I

x
→ A, factored by the equations between the arrows of C. Although this is

not a very effective description, it does show that the polynomial category C[x:X] can in this case be quite complicated4.
Moreover, in contrast with the cartesian (closed) case, the inclusion ad : C −→ C[x:X] does not have an adjoint in general,
and thus does not support abstraction. The task is now to extend the polynomial construction to support abstraction. We
follow, refine and strengthen the results from [30].

Definition 3.2 Let C be a monoidal category, and E a set of well typed equations between some polynomial arrows in
C[x:X]. A monoidal extension is the monoidal category C[x:X; E] = C[x:X]/E obtained by imposing the equations E on
C[x:X], together with all equations that make it into a monoidal category. Every monoidal extension comes with the obvious
ioof ad : C −→ C[x:X; E].

A substitution functor between monoidal extensions is a (strict) monoidal ioof F : C[x:X; E] −→ C[y :Y ; D].

We denote by ExtC the category of monoidal extensions of C, with the substitution functors between them.

Definition 3.3 A (monoidal) abstraction over a monoidal extension ad : C −→ C[x:X; E] is the adjunction ab ⊣ ad such
that ab(A ⊗ B) = ab(A) ⊗ B, and the unit of the adjunction h : Id −→ ad ◦ ab satisfies hA = x ⊗ A. We denote by AbsC

the subcategory of ExtC spanned by the monoidal extensions that support abstraction.

Notation and terminology. Since the abstraction notation ab ⊣ ad : C −→ C[x:X; E] is generic, we often elide the
structure and refer to an abstraction as C[x:X ; E].

Theorem 3.4 The category AbsC of monoidal abstractions is equivalent with the category C× of commutative comonoids in
C. Each abstraction is isomorphic with the Kleisli adjunction for the comonad induced by the corresponding comonoid.

Proof (sketch). Given a commutative comonoid (X, ∆,⊤) in C, we construct the abstraction ab ⊣ ad : C −→ C[x :X ; E] as
follows. Let

E = E(∆,⊤)

be the set of equations

x⊗ x⊗ · · ·⊗ x︸ ︷︷ ︸
n times

= ∆
n ◦ x for n = 0, 1, 2 . . .

where ∆n : X −→ X⊗n is defined inductively:

∆
0 = ⊤ ∆

1 = idX ∆
2 = ∆

∆
i+1 = (∆×X⊗i−1) ◦ ∆

i

This determines the extension ad : C −→ C[x :X ; E]. Using the symmetry, it follows that every polynomial ϕ(x) ∈ C[x :
X ; E] must satisfy the equation

4E.g., Rel[x] is not a locally small category.
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Corollary 4.5 The category of dagger-monoidal abstractions    
‡-AbsC is equivalent with the category C∆ of commutative 
dagger-Frobenius algebras and comonoid homomorphisms in C





























































































































Open Problems

• How to compute MGU for two diagrams? 
• Trickier than expected because the category does not ave 

many push-outs! 
• Cut-elimination for the whole computad? 
• Can we we express the separation condition for 

combinatorial planar graphs?



THANKS!


