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Abstract

This paper presents a computational model of semantic
memory, trained with behaviourally inspired vectors.
The results are consistent with the conceptual structure
account (Tyler, Moss, Durrant-Peatfield & Levy, 2000),
which claims that concepts can be understood, and the
effects of random damage predicted, based on (i) the
number of correlations its features make, and (ii) the
distinctiveness of those correlated features; the former
indicating category membership, the latter distinguishing
between concepts. The model shows a changing
direction of domain-specific deficits as damage
accumulates (animals concepts lost first, then objects
upon severe lesioning). Also, the pattern of error differs
between domains; animals tend to be confused for other
members of the same category, whilst object errors
disperse more widely across categories and domain.
Recent neuropsychological evidence demonstrates a
similar pattern for semantically impaired patients. For
both patients and the model, this can be attributed to the
timing of featural loss: distinctive features are lost earlier
than shared features. The model demonstrates that the
relative timing of feature loss differs between domains,
resulting in the emergence of domain-specific effects.

Introduction
The neuropsychological literature on semantic

memory shows patients can develop an impairment in
one domain of knowledge, whilst the other is relatively
spared. Most commonly, semantically impaired patients
show a deficit for living things (e.g. Warrington &
Shallice, 1984), with the reverse pattern being rarer
(e.g. Hillis and Caramazza, 1991).

There are three main types of explanation for the
double dissociation. One postulates physically separate
and functionally independent stores in the brain for
dissociable categories of knowledge (e.g. Goodglass,
Klein, Carey and Jones, 1966; Carramazza & Shelton,

1998). Another suggestion is that concepts may vary by
domain according to the type of semantic information
upon which they depend, with living things depending
more on sensory information and artefacts depending
more on functional properties (Warrington & Shallice,
1984; Warrington & McCarthy, 1983; 1987). Selective
brain damage to one type of semantic information will
lead to a category-specific deficit. This account
assumes neuro-anatomical specialisation for type of
property rather than category per se, to permit their
independent disruption by brain damage. Finally, and
most recently, attempts to account for category-specific
deficits suggest that they can emerge from the internal
structure of concepts alone without any type of neural
or functional specialisation. Computational models
have shown that random damage to a unitary,
distributed system can produce category-specific
deficits (e.g. Devlin, Gonnerman, Anderson and
Seidenberg, 1998; Tyler et al, 2000). These models
draw on structural aspects such as property correlation
and distinctiveness.

Conceptual Structure Account
Common to all distributed accounts of semantic
memory (see McRae, de Sa, Seidenberg, 1997; Devlin
et al, 1998; Tyler et al, 2000) is the observation that
similar concepts tend to have overlapping sets of
semantic features. Properties that frequently co-occur
in concepts will serve to predict each others presence, a
fact that a distributed connectionist network will exploit
during training, leading to mutual activation of those
properties. A consequence of mutual activation is
resilience to damage of those properties, and hence their
continued ‘availability’  to a stricken network when
identifying concepts. A second important factor, is the
distinctiveness1 of features (cf. Devlin et al, 1998). A
feature that is present in only one concept can be used
                                                          
1 Distinctiveness is calculated as 1/number of concepts for
which the property is given.



to discriminate that concept from all others. As a
feature occurs in an increasing number of concepts it
becomes a progressively poorer marker for each of
those concepts.
The conceptual structure account of semantic memory
(Durrant-Peatfield, Tyler, Moss, & Levy, 1997; Tyler et
al 2000) recognises that these factors − correlation and
distinctiveness − will interact to determine which
features will survive random damage, and the
usefulness of the remaining features in preventing
concept loss. By their very nature correlation and
distinctiveness tend to be inversely related with each
other. Highly correlated properties are often present in
many concepts, and hence are not very distinctive.
Thus, they will be robust to damage, but their
preservation will be more useful for identifying the
category to which an item belongs rather than
distinguishing it from other category members.
However, those distinctive properties that do correlate
with other properties (especially other distinctive
properties) will protect the concept in which they are
found. Distinctive properties that fail to make strong
correlations with other properties will be very
vulnerable to damage. Domain differences and
dissociations arise because concepts in different
domains differ in these respects. We theorize that living
things concepts have many intercorrelated properties,
compared to artefacts, but these tend to be less
distinctive. As a consequence, artefact concepts are
more robust at all but severe levels of damage when
only highly correlated properties remain intact.

Computational Model
Previous work instantiating the conceptual structure

account of semantic memory (Tyler et al, 2000) used 16
vectors that incorporated the theoretical assumptions of
the account. In the current model the vectors are
designed to broadly reflect the observed differences
between living and non-living domains, as found in a
large-scale property generation study (Moss, Tyler &
Devlin, In Press). The simplified vectors, homogenous
within domain and of equal number between domains,
ensure the model’s results are readily interpretable. In
addition, the model was scaled up, and trained on 96
vectors. Consequently, the training set is as sparse as
the property norm data which it resembles. One might
expect a distributed model to perform differently as the
training set becomes more sparse, as a sensible error-
reduction strategy would be to turn all units off. This
model sought to confirm that a distributed model would
still build internal representations reflecting
correlational structure in spite of extreme sparsity.

Property norm data
Tables 1 and 2 report the global and distributional
statistics of the property norm concepts. Data is also

given for the model vectors, designed to resemble the
property norm concepts as far as practicable.

Table 1: Global properties of the property norm set and
the model vectors

Property
norms

Model
vectors

Number of
concepts

93 96

Features that
are highly
distinctive2

78% 78%

Sparsity3 3.7% 4.6%

Table 2: Characteristics of property norm concepts
across domains (figures for model vectors in brackets)

Living things Artefacts

Mean no.
properties/concept

17.7 (20) 11.3 (14)

Mean distinctiveness of
properties

0.64 (0.22) 0.73 (0.32)

No. of shared
properties/concept4

13.7 (15) 7.5 (6)

Following McRae et al (1997) the Pearson product
moment correlation was computed for all pairs of
semantic features. For the property norms, of the 78,210
possible correlations, only 2332 scoredr>0.3. Living
things had more correlated property pairs (CPPs) than
artefacts (4070 vs. 1612), but artefacts had
proportionally more CPPs occurring between distinctive
features (20.0% artefacts vs. 11.7% living things).

Representations
The training set consisted of 96 vectors, divided into 2
domains (Animals and Objects) and 4 categories
(labelled somewhat arbitrarily as Land animals, Birds,
Tools and Furniture). The vectors embodied the facts
outlined below:

• There were 48 Animal vectors (24 Land animals
and 24 Birds).

• Each Animal vector turned on 20/368 features.
• Every Animal vector turned on 10 ‘Animal shared’

features.
                                                          
2 The proportion of features in the set shared by just 1 or 2
concepts.

3 Sparsity refers to the average proportion of features turned
on for each vector.

4 A shared property being defined as one held by three or
more concepts, otherwise the property is distinctive.



• Land animals were distinguishable from Birds by
which group of 5 shared features was turned on –
‘Land shared’  or ‘Bird shared’ .

• All animals could be distinguished from each other
by which three ‘Animal distinctive features’  were
on.

• There were 48 cross-domain features, each concept
turning on two. Each concept, whether animal or
object turned on a unique combination of cross-
domain features (say 1 and 4; or 2 and 5 etc) such
that each unit was turned on by 4 different concepts
(2 animal, 2 objects). This means that having a
cross-domain feature on does not predict at all
which domain’s concept is on, but limits the
concept to one of four possibilities.

• There were 48 object concepts (24 tools and 24
furniture).

• Every Object vector turned on 14/368 features.
• Tools and Furniture were distinguishable by which

group of 6 shared features they turned on.
• Object concepts were identifiable by which 2

‘object distinctive triplets’  were on. They are
termed triplets because, within a triplet, if one
feature is on then the other two must also be on
(likewise when off). However, each “object
distinctive triplet”  is turned on both by 1 tool
concept and 1 furniture concept, so having a triplet
on does not perfectly predict which object is on (in
contrast to “animal distinctive features” ).

The resultant vectors resemble the concepts analysed in
the property generation study (see tables 1 and 2). The
resemblance extends to the vectors’  correlational
structure. For the model vectors, of the 67,528 possible
correlations, 1864 scoredr>0.3. Animals had more
correlated property pairs (CPPs) than objects (5472 vs.
2016), but objects had proportionally more CPPs
occurring between distinctive features (35.7% objects
vs. 2.6% animals). This reproduces the pattern of the
domain effects in the property norms, but exaggerates
the size of the difference.

Architecture and training
The network consisted of three layers, a semantic input
layer, a hidden layer and a semantic output layer, as
shown in Figure 1. During training, with the back-
propagation learning algorithm (Rumelhart, Hinton &
McClelland, 1986), the network was required to
reproduce the input on the output layer. 10 networks
were trained with different initial random weights
(±0.005), with a learning rate of 0.25 and momentum
0.5. Training was stopped when the squared error for
each feature in every vector was below 0.01, occurring
after a mean of 193 presentations of the complete target
set.

              

     1.0

Figure 1: Model architecture: the numbers in each box
indicate the number of units in that layer, while arrows

indicate full connectivity between layers5

Lesioning
Brain damage is simulated in this model by random
deletion of semantic connections (by setting weights to
0). Initially 10% of weights were cut, then the model’s
performance analyzed. The proportion of damaged
connections was increased by increments of 10% until
all inter-layer connections were set to 0. This lesioning
process was carried out 5 times on each of the 10
trained networks to produce a total of 50 networks.

Testing
Network performance was analyzed both at the level of
features and concepts. The training set was presented to
the network’s input layer and the pattern of activations
on the output layer examined. We predict that highly
shared features will be more resilient to damage than
distinctive features (i.e. will still activate when they
should). In the model vectors this will correspond to the
greatest advantage being for ‘animal shared features’ ,
then ‘ land’ , ‘bird’ , ‘ tool’  and ‘ furniture’  shared features
behaving similarly, with ‘animal distinctive’  features
being least preserved. A different pattern is predicted at
the conceptual level where discrimination is dependent
primarily upon distinctive features. Object distinctive
features cluster into ‘ triplets’ , this additional inter-
correlation is predicted to enhance their robustness to
damage relative to Animal distinctive features, leading
to an advantage in concept identification. Only at severe
levels of damage, when all distinctive features are lost
to the network, will the advantage for animal shared
features translate to an advantage in concept naming.

                                                          
5 Bias ensures the 100% damaged model outputs 0s
(approximately); in its absence the semi-linear logistic
activation function makes every semantic output unit 0.5. Bias
connections were not lesioned.

semantic output (368)

semantic input (368)

bias
(-2.2)

hidden units (50)



Featural analysis
For each vector, the activation of the semantic output
layer was binarised – unit values <0.5 were scored 0
while values ≥0.5 were scored 1. Each unit value was
compared to that of the input vector and declared
correct or error. Attention focused on the subset of units
that were supposed to be on for each vector, and the
number of errors summed for each domain. Because
each output unit represents a local feature it is possible
to compare the errors across the different feature types
(i.e. ‘animal shared’ , ‘object distinctive triplet’  etc).

Overall analysis
The pattern of activity over the output units was
compared to all 96 vectors; both had been normalised to
remove effects of concept size6. The closest match, by
Euclidean distance, was considered the model’s
response. Upon network lesioning, errors occur of three
types: within-category error, cross-category error, or a
cross-domain error.

Results
Figure 2 presents the results of the featural analysis

averaged over 50 simulations. The general pattern is for
a greater impairment of unique relative to shared
features at all levels of lesioning between 20 and 80%.

Figure 2:Featural error (failure to activate) as a function
of network damage.

The effects of damage upon concept identification are
shown in Figure 3, which shows an advantage for
objects over animals up until 80% of connections had
been lesioned. A two-way ANOVA (domain*damage)
showed a main effect of domain (i.e. animals vs.
objects, (F[1,539]=317, p<.0001), and a significant
domain by damage interaction (F[10,539]= 5406,
p<.0001).

                                                          
6 Concept size refers to the number of features turned on.

A repeated measures t-test on the 90% damaged data-
points showed that the advantage for animals, although
small, was significant (t= -6.249, p<.0001).

Figure 3: Identity mapping as a function of damage.

Figure 4 shows the difference in the distribution of
error types when concepts were mis-identified. It
attributes the early animal deficit to within-category
error, with all errors involving members of the same
category. Conversely, object errors are more widely
dispersed between the two domains.

Figure 4: Error types as a function of damage.

Discussion
This research demonstrates how category and

domain-specific deficits can arise following damage to
a single distributed semantic system without explicit
category structure. Further, it accounts for the patterns
of impairment observed in patients as resulting from a
complex interaction of correlations between features
and the extent to which features are shared or
distinctive. In general, the behaviour of the model is
very similar to the behaviour of some brain-damaged
patients with category/domain specific deficits.

The preservation of individual features was
dependent on the number of correlations each feature
entered into, with more highly shared, correlated
features being more robust. This pattern is similar to
that observed in semantically-impaired patients who
show better preserved knowledge of shared, category-
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defining information compared to distinctive, concept-
identifying information (Moss, Tyler, Durrant-Peatfield,
& Bunn, 1998; Moss et al, In Press).

 The preservation of individual concepts showed a
different pattern. Global damage, where connections
between layers were randomly lesioned, produced an
initial impairment for animals, followed at severe
lesioning, by impairment for objects. Successfully
identifying a concept relies most heavily on activating
its distinctive features. With damage, object distinctive
properties were more robust than animals, which can be
attributed to their tendency to correlate with other
distinctive properties. Crucially, this same pattern of
correlations occurred in the empirically derived
property norms (Moss et al, In Press). This shows that
the same factor that accounts for an early animal deficit
in the computational model could also account for the
initial living-things deficit found in at least some
semantic dementia patients (Moss & Tyler, 2000; Moss
et al, In Press). Beyond 70% lesioning all distinctive
features failed to activate, whether animal or object.
Consequently, the model had to ‘make a guess’ , though
the odds of guessing correctly would have differed for
the two domains. The animal shared features are both
more numerous and more correlated, hence will remain
more likely to be available to the network. Therefore
the model would have been guessing from a smaller
subset of possible concepts than would have been the
case for objects, which could lead to a mild object
deficit. This unequal distribution of shared features
between domains is also characteristic of the property
norm data.

The lesioning data shows that the magnitude of the
early disadvantage for naming animals exceeds that of
the late disadvantage for naming objects. This too
seems to be reflected in semantic dementia patients
where living-thing deficits tend to be both greater in
size and more numerous than corresponding artefact
deficits (Moss & Tyler, 2000).

 The conceptual structure account, realised in the
computational model, also predicts the type of error
likely to be made when concepts are mis-identified.
Due both to the robustness of animal shared features,
and the vulnerability to damage of their distinctive
features, animals will most commonly be confused with
other members of the same category. Cross-domain
errors should hardly ever occur. Whilst the same should
be true of objects, this tendency will be less marked,
and errors will be dispersed more widely between the
types of error possible: within-category; cross-category;
and cross-domain. There is some evidence for this
pattern in longitudinal studies of picture naming.
Hodges, Graham & Patterson (1995) report a semantic
dementia patient, JL. For living things, he made
progressively more within-category and superordinate
errors, but never produced a cross-category or cross-

domain error. Similarly for the progressive aphasic
patient AA (Moss et al, 1999), tested on four occasions
over two years, but failing to produce a living things
cross-category mistake until the final testing session.
For artefacts, in contrast, she occasionally made cross-
category and cross-domain errors throughout the testing
period.

Epilogue: The problem of determining error
In common with other models of semantic memory, the
network’s output was compared to every vector in the
training set, and the vector with which the normalised
Euclidean distance was smallest, regarded as the
network response. As a result the network was forced to
make a response, irrespective of the meaningfulness or
otherwise of the output. A potential limitation of this
procedure is that the network could not respond “don’ t
know”, a response commonly produced by semantically
impaired patients in semantic tasks. As a first step to
simulating a “don’ t know” response a threshold for
normalised Euclidean distance was introduced; if the
error between the output and every vector exceeded this
threshold then the output was scored incorrect. The
problem then was to decide how strict the threshold
ought to be. The result of some early explorations is
shown in figure 5.

Figure 5: The variability of domain effects with
different thresholds for normalised Euclidean distance.

A threshold value of 1.0 produced a strong cross-over,
an early animal deficit progressing to an object deficit
with damage. Reducing the threshold value to 0.75 had
a catastrophic effect upon object identification, but
animal identification was less impaired. As a result, the
graph showed a consistent deficit in identifying objects.
A threshold figure of 1.5 produced a graph identical to
that when no threshold was applied (i.e. the same as
figure 3). The sensitivity of object identification to
varying threshold values probably reflects the smaller
number of inter-correlations between object features.
The representation of an object concept in semantic
space will be sparser, so when the representation is
damaged, and a strict threshold is applied, it will be
unlikely to fall into a neighbouring concept’s space.
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Instead the output will be scored “don’ t know”, an
outcome which is much less likely in the denser animal
semantic space.
The problem here is how we determine where the error
threshold should lie? One approach might be to record
the number of “don’ t know” responses the model
makes, and relate this to patient data. This is
complicated by the difficulty of relating the degree of
brain damage to particular levels of network lesioning.
Also, patient performance on tests of semantic
knowledge varies with the demands of the task. For
example, “Don’ t know” is a more common response for
picture naming than word-picture matching.
Speculatively, the normalised Euclidean threshold
could reflect a compromise position in a speed/accuracy
trade off. Tasks that demand a rapid response would
have a more relaxed threshold than those where time is
given for a considered response.

Conclusion
This model suggests that the data inherent in

conceptual structure is sufficient to account for the
domain-specific effects observed in semantically
impaired patients. Categories and domains emerge
when concepts are represented in a single, distributed
system. Some recent neuro-imaging studies fail to show
regional differences in activation for different
conceptual domains (e.g. Devlin, Russell, Davis, Price,
Moss, Matthews, & Tyler, 2000), consistent with the
neural substrate of concepts being organised in a
distributed fashion.
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