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Abstract

It is well known that pairs of dimensions that are
proceseed hdigticdly - integral dimensions - normally
combine with a Euclidean metric, whereas pairs of
dimensions that are processed analyticdly - separable
dimensions - most often combine with a dty-block
metric. This paper extends ealier reseach regarding
information integration in that it deds with complex
stimuli consisting of both dmensiona pairs previously
identified as hdlistic, and dmensiona pairs previously
identified as analyticd. The generd pattern identified is
that information integration can be more acarately
described with a rule taking aspeds of stimuli into
consideration compared to a traditiona rule. For
example, it appeas that combinations of analyticd and
holistic stimuli, are better described by treding the
different subspaces individually and then combining
these with addition, compared to any single
Minkowskian rule, and much better compared to any of
the Minkowskian rules traditionally used (i.e. the dty-
block-, the Euclidean or the dominance-metrics).

I ntroduction

Suppcse we have objeds that differ on severa
dimensions — how is (dis-) similarity of such objeds
related to (dis) similarity on ead of the dimensions?
Since Attneave (1950 raised essentialy this question,
much research efforts have been focused on the
applicability of different combination rules. The most
commonly investigated rules, or metrics, for describing
distances in a multidimensiona space have been
instances of the generali sed Minkowski metric (Eg. 1).
1/r

n
M d(i.j):{kzlxm—x,-klr} 21
=1

where d(i,j) is the distance between objed i and j, X
refers to the position of objed i on the kth axisand n is
the number of congtituting dimensions.

Three extreme caes can be identified: r = 1; the city-
block metric - The distance is the sum of the @solute
differences for ead of the underlying dimensions; r =
2: the Euclidean metric - The distance @rresponds to
the square root of the sum of the squared dfferences for
ead of the underlying dimensions, and r = « : the
dominance metric - The distance between two oljedsis
a function of the distance for the separate dimension
that differ the most.

When it comes to cognitive modelli ng, the dty-block
and, espedadly, the Euclidean metrics are the most

common. However, it is well established that some
pairs of dimensions combine, with Garners (1974
terminology, to form integral dimensions and cthers to
form separable dimensions (see eg. Garner, 1974
1977. An integral pair typicdly is procesed as
holistic, unanalysable, diredly and effortlesdy by
subjeds and that the constituent dimensions combine so
as to conform to a Euclidean metric; pairs of hue,
saturation or brightness of colour (see eg. Hyman &
Well, 1967 Kemler Nelson, 1993 and the auditory
dimensions of pitch and loudness (Kemler Nelson,
1993 typicdly do this. The arresponding description
for a separable pair is that the mnstituent dimensions
are procesed independently by subjeds and that they
combine so as to conform to a dty-block metric, e.g.
size and refledance of squares (Attneave, 1950).

Now, the combination rules for integral and separable
dimensions are well investigated for dimensiona pairs.
But, what about more complex combinations? How do
we integrate information when both integral and
separable pairs are involved? Adeguate descriptions of
information integration behaviour is not only important
from a theoreticd perspedive, but also from a more
pradicd and pragmatic macine leaning perspedive.

Simple paralelograms varying in saturation,
brightness height and tilt could serve & an example.
Pairs of the dimensions of colour, i.e. of hue, brightness
and saturation, are often used as prototypicd examples
of integral dimensions (see eg. Hyman & Well, 1967,
Kemler Nelson, 1993. Perception of variation in
saturation and brightnesson a single olour patch have
in previous dudies (e.g. Hyman & Well, 1967 1968
been shown to be better described using the Euclidean
compared to the dty-block metric. The height- (size)
and tilt- dimensions of parallelograms is an example of
separable dimensions (Tversky & Gati, 1982. Tversky
and Gati found such pairs to be better described using
the dty-block metric compared to the Euclidean.

How, then, could subjeds phenomenologicd (dis-)
similarity between paralelograms varying in height,
tilt, saturation and hrightness be described? With
reference to the different metric properties of the
underlying pairs of dimensions, it makes sense to divide
the stimuli space into two separate subspaces - one
describing the aspeds of shape of the stimuli (i.e. height
and tilt) - the shape space - and one the wlour aspeds
(i.e. saturation and hrightnes - the colour space. In
this case it could be that two different metrics sould be



applied: the dty-block metric for the shape space ad
the Euclidean metric for the mlour space For
combining the separate subspaces into a holistic
meeasure, simple aldition could be epeded, with
reference to that the pair of subspaces better fit the
description of separability compared to integrality.

In the remainder of this paper, combination rules,
such that the same Minkowski-r (r) applies to the whole
stimuli space will be referred to as homogenous rules.
Metrics guch that oner, say r,, applies to one subspace
and oner, say r,, applies to another, and that the holistic
meeasure is obtained by combining the sub-metrics
separably, will in the following be referred to as
heterogeneous rules or metrics'.

Now, how could we determine which of reasonable
aternatives is the best when we want to describe (dis-)
similarity judgements of stimuli varying in height, tilt,
saturation and brightness?

General Method

The method used by Dunn (1983 in order to investigate
the relationship between dimensional integrality and the
combination rule used in a dissmil arity judgement task,
will be aoped in this paper. However, it will be
generaised in order to ded with stimuli with more than
two underlying dimensions.

The basic idea is to dvide the set of dissmilarity
ratings into unidimensional and bidimensional ratings,
reduce them to dstances between pointsin a predefined
dimensional space ad then determine the r that best
predicts the bidimensiona dissmilarities from the
unidimensional ones. In order to reduce ratings to
distances correspondence, interdimensional additivity,
intradimensional subtradivity and lineaity must be
asamed (Dunn, 1983 see 4so Johanneson, 2001a).
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Figure 1. 12 &timuli and their component distances
(cd1-cd6). (Based on Figure 1. in Dunn, 1983.

A first step is to decompose the unidimensional
distances into component distances (see Figure 1

! There ae few examples of true integral dimensions in the
literature (Grau & Kemler Nelson, 1988. This fad does not
undermine the passble pradicd importance of heterogenous
models, since perception d many dimensiona pairs fall
between the endpdnts of a ontinuum of dimensiond
separability (Smith & Kilroy, 1979 Smith, 1980.

above). Further, under the assumption that the function
relating disdmilarities to dstances is linea, the
dissimil arities between the stimuli in Figure 1 could,
acordingto Dunn (1983, be expressd as

6
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where d(a,b) is the percaved dsdmilarity between
objed a and b, wy, refers to the weight of the
component distance cd;, and A is an additive mnstant.

Eq. 2 spedfies a multiple regresson equation in
which the weights define aset of dummy variables, the
component distances form the regresgon coefficients
and A isthe aditive constant.

Determining the Spatial Metric

Performing a multiple regresion analysis on
unidimensional dissmilarities provides an estimate of
the component distances and the alditive cnstant.
From these, it is graightforward to estimate awy
“Minkowski dissmilarity”. In order to determine the
“best” describing metric for a particular subjed, Dunn
(1983 compared the mean observed and the mean
predicted hidimensional dissmilarity using a cetan
value of r: overestimation of r lead to underestimation
of the observed mean, whereas underestimation of r
lead to overestimation of the observed mean.

M ethodology Adopted

The methoddogy outlined by Dunn will be aopted
with the exceptions as outlined below. Since the present
paper aims to investigate whether the madine leaning
community could gain from using different Minkowski
metrics for different subspaces rather than a singe
metric goplied to the whole space the various tests
suggested by Dunnare not central here.

Experiment |

Subjects

14 students at the University of Skdvde participated for
areward of cinematickets roughy worth £11 a $17.

Stimuli
The stimuli were parall elograms varying in height (h; 4,
5 o 6 units of length), tilt (t; 40, 50 a 60 degrees),
saturation (s; 40, 60 a 80% of maximum saturation)
and brightness (b; 40, 60 a 80% of maximum
brightnesg. The width and the hue of the
parall elograms were held constant (4 units of length and
240 degrees of the wlour circle, respedively).

In order to not exhaust the subjeds, 20% of the
posshle 3240 mirs (i.e. 648 where thosen randomly.
The order of the seleded pairs were randomised.



Procedure

The experimental sessons were performed individualy

in aquiet room with drawn curtains.

Eadch subjed was first asked whether she/he had
normal colour vision or not?, and was then asked to
foll ow the instructions given on the screen.

The experiment consisted of several phases:

* Instruction phase: Subjeds were informed that they
should judge dissmilarity between coloured
parall elograms using a 20-graded scde.

e  Stimulus presentation: Diminished versions of all
stimuli  were presented simultaneoudy in a
randomised layout.

e Training phase: Subjeds made dissmilarity
judgements for ten pairs of coloured parall elograms
varying in the same dimensions as the red stimulus
material. The levels did not coincide with the levels
of the red material.

e Instruction phase: An instruction phase & above
was repeded. This time subjeds were dso
informed that the judgement sessons would be
divided into six parts with bress between.

e Simulus presentation: Subjeds were gain
presented with the complete stimulus material.

e Judgement phase: The 648 stimulus pairs were
presented in the same random order for all subjeds.
The experiment took about 2 hours.

All subjeds reported they had normal colour vision.

Results and analysis

Table 1 below presents the aerage @mponent
distances (see Figure 1 above) per dimension, and the
coefficient of determination for the wllapsed data.

Table 1: Average mmponent distances and R?.

Avg_h
4.160

Avg b R?
1.214 0.762

Avg_t
2.907

Avg_s
1.214

The average @wmponent distances, which could be
interpreted as the relative saliency of ead dimension
(Dunn 1983, differ between dimensions. Espedally,
the saturation and brightness dimensions have
somewhat shorter component distances (are less
weighted) compared to height and tilt. A possble
explanation for this unequal weighting is that subjeds
perceived the variation in height and tilt as larger
compared to the variation for the integral pair of
saturation and brightness

2 In a pilot experiment preceeling this sibjeds performed a
colour test in order to find ou if they could discriminate
between the wlours that were to be used. Since dl subjedsin
the pilot experiment reported the @lour test to be simple a
simple question was judged to be enowgh.

The oefficient of determination is not very large,
indicating that a linea model misses to acount for a
considerable propartion of the variance of the data.

Determining the Spatial Metric When there ae just
two underlying dimensions it is obvious that distances
should be estimated and evaluated for stimuli differing
in two dmensions. However, as the number of
underlying dimensions increases, so does the number of
posshiliti es. In the present case, when four underlying
dimensions were used, stimuli pairs differing in two or
more dimensions were analysed.

Justifying the Measure of Error In order to possbly
improve the process of determining the spatial metric,
two aternative measures of error for a particular r were
contrasted. One was in line with Dunnis method:
deviation of the &solute difference between the mean
observed disgmilarity and the mean predicted/estimated
disgmilarity from the mean observed dssmilarity - in
the following referred to as DEV. The other, referred to
as the mean squared error (MSE), is defined as
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where J(a,b) is the percdved, o&(a,b) is the

predicted/estimated - dissmil arity between objed a and
b, and N is the number of stimuli pairs.

For each of the homogenous rules. city-block,
Euclidean and daminance and al non-ordered
combinations of heterogeneous rules, where the
subspaces where formed by the dty-block, Euclidean or
dominance metric®, the distances between al non-
ordered combinations of stimuli were cdculated from
physica descriptions of the stimuli. By regarding the
distances as fictive dissmil arities, and by estimating the
dissmil ariti es as described above for different rules, the
errors acarding to DEV and MSE were cdculated. The
same subset and physicad descriptions as used in the
present experiment were aalysed. Further, the
estimated dstances were scded into a discrete scde
ranging from 1 to 20 Since the underlying rule was
known in ead case, the two aternative measures of
error could be evaluated against ead other.

For the homogeneous models, both DEV and MSE
suggested the same - and corred - underlying model.
For the heterogeneous models MSE suggested the
corred model in all cases. The use of DEV, however,
was clealy systematicdly ambiguous. In al cases when

3 Note that the heterogenows rule where both subspaces are
formed by the dty-block metric exadly corresponds to the
city-block homogenous rule.



the underlying model could be described as metric A
applies to subspace 1 and metric B applies to subspace
2, both the crred model and the model such that
metric B applies to subspace 1 and metric A applies to
subspace 2, were suggested. The explanation isthat that
the sum of absolute deviations for the two models
necessarily isthe same for abalanced set of stimuli.

In summary, based on this anaysis, MSE appea to
be the better measure for the purpases of this paper.

Spatial Metric Candidates for describing the individual

subjeds data were evaluated using MSE as the

measure of error. In addition to the rules used when

evaluating the two error measures above, i.e.

« the homogenous rules: city-block, Euclidean and
dominance - in the following referred to as Hom
cit, Hom euc and Hom dom, respedively,

e al non-ordered combinations of heterogeneous
rules, where eab of the subspaces were formed by
the dty-block, Euclidean or dominance metric - in
the following referred to as Het citeuc, Het citdom,
Het euccit, Hit euceuc, Hit eucdom, Hit domcit, Hit
domeuc and Hit domdom, respedively,

errors were cadculated for values of Minkowski-r

ranging in small discrete steps fromr = 1.0 to r = 50.0

applied to the whole stimuli space (the homogenous

model giving the lowest error will be referred to as

Hom opt), the shape subspace ad the mlour subspace

respedively. The heterogeneous model where the

separately optimised r for the two-dimensional shape
spaceis applied to “shape” and the separately optimised

r for the two-dimensional colour spaceis applied to

“colour”, will be referred to as Het sepHT-sepSB.

Finaly, the wmbination of r:s, one for the shape

subspace ad one for the wlour subspace when

optimised simultaneoudly with a heterogeneous rule -
will be referred to as Het SmHTsImSB.

Table 2: Models, r:sand errors for average data.

R Err
Het sSmHTsmSB 155,2.25 2.146
Het sepHTsepSB 15522 2146
Het euceuc 2,2 2.339
Hom opt 12 2481
Het eucdom 2:50 2.601
Het euccait 21 2.894
Het domeuc 50;2 3.838
Het domcit 50,1 3.905
Het citdom 1,50 3.948
Het citeuc 1;2 4194
Het domdom 50,50 4313
Hom cit 1 5.907
Hom euc 2 7.805
Hom dom 50 16.644

The candidate models evaluated and the arors for the
collapsed data ae presented in Table 2 above.

A heterogeneous model combining a rule between the
city-block and the Euclidean metrics® for the shape
space and a rule roughHy corresponding to the
Euclidean metric for the mlour space(Het SmMHTsSIMSB
and Het sepHTsepSB), gave alower error than the best
of the homogenous models (Hom opt), which had ar =
12, i.e. hafway between the dty-block and the
Euclidean metrics. This was true irrespedively of if the
r:s were optimised separately or simultaneously. The
optimal heterogeneous Minkowski-r:s found were lower
for the shape space ompared to the wlour space
However, the r:s found were dightly different from the
levels identified by previous reseach when two-
dimensional stimuli have been used. The values were
somewhat higher compared to what has been identified
for these spaces before. It may be the cae that the r-
value goes up when the dimensionality increases. This
speaulation makes eense mnsidering that we have
limitations in terms of how many dimensions we can
process $multaneoudly, and that larger vaues of r
corresponds to focusing more on the dimension where
the stimuli-pair at hand differ the most.

The common homogenous Euclidean rule (Hom euc)
gave a substantially worse eror than both the best
heterogeneous rule ad the best homogenous rule.
However, the somewhat unequal weightings of the
dimensions defining the two subspaces (see dove)
probably causes the peauliarity that Het euccit produces
an error lower than that for Het citeuc. The fad that
there ae differences in weighting indicate that there ae
differences in salience between dimensions.

In summary, a heterogeneous rule or model seems to
describe the data better compared to a homogenous one.

Errors and ris were cdculated aso for the
heterogeneous rules combining the “odd’, or
counterintuitive, subspaces h/s and t/b on one hand and
h/b and t/s on the other. The heterogeneous models with
the lowest errors for the average data for ead of the
threesubspacedivisions are presented in Table 3.

Table 3: Different subspacedivisions and their errors.

Subspacedivision Model Err

height/tilt; sat./bri. HetsmHTSmSB  2.146
height/sat.; tilt/bri. HetsmHSSmTB  3.030
height/bri.; tilt/sat. HetsmHBsSmTS 2.861

The arors for the heterogeneous models for the
“odd’ subspace divisions are nsiderably larger
compared to the aror for the original division. For the

4 Note, however, that the Minkowsky-r of a rule giving
distances halfway between the dty-block and the Euclidean
metric isnot the intuitive 1.5, but rather approximately 1.2.



individual data, the rresponding difference was true
for 8 out of 12 cases with at least one r differing from
1.0. This difference indicae that the intuitive division
into subspaces of shape and colour makes snse.

Experiment 11

In Experiment I, the heterogeneous r:s found were
larger than what has been found in ealier reseach. A
reasonable question is if the dement of non-separability
together with the increased dimensionality causes sich
effeds. A second experiment was conducted in order to
investigate if integrality (non-separability) could be
eliminated as an explanation or not. Contrary to
Experiment 1, the underlying dimensions in the present
experiment are purely separable.

Subjects

12 students (the majority were undergraduates) at the
University of Skovde participated for a reward o
cinematicketsrougHy worth £11 a $17.

Stimuli

The stimuli varied in four dimensions, height (h), tilt
(t), width of a stripe parallel to the horizontal axes (st)
and brightness(b) of a parall elogram. These dimensions
differ from the ones used in Experiment | above in
some aucia aspeds. One is that they do not form
intuitive subspaces. Another is that al possble pairs of
dimensions match the description of separable
dimensions.

Each dimension varied in threelevels, h: (4,5 or 6
units of length), t: (40, 50 a 60 degrees), st: (1, 2 or 3
units of width) and b: (40, 60 a 80% of maximum
brightnesg. The width, hue and saturation were held
constant (4 units of length, 240 degrees and 60% of
maximum saturation, respedively).

The same pairs (w.r.t. the numbers of the stimuli),
and order between pairs asin Experiment | were used.

Procedure
The experiment was conducted as Experiment | above.

Results

The average component distances for the wllapsed data
in Experiment 1l (Table 4 below), are not perfedly
equal, espedaly the brightness dimension is weighted
lesscompared to the others.

Table 4: Average mmponent distances and R?.

Avg h
2.089

Avg b R?
0.625 0541

Avg t
2.381

Avg st
1.530

The mefficient of determination is very low, hence a
general linea model does not apply well.

Spatial Metric The same cadidate models as
evaluated in Experiment | were evaluated. The resulting
errorsfor the wllapsed data ae presented in Table 5.

Table 5: Models, r:sand errors for average data.

r Err
Het sSmHTSmSTB 11;1 3.483
Hom opt 1 3.523
Hom cit 1 3.523
Het sepHTsepSTB 16;1 4,010
Het citeuc 1;2 4213
Het eucait 21 4434
Het citdom 1; 50 4638
Het euceuc 2,2 5573
Het domcit 50; 1 5.885
Het eucdom 2;50 6.185
Het domeuc 50; 2 7.234
Het domdom 50; 50 7.935
Hom euc 2 11.333
Hom dom 50 17.219

It is clea that the best rule, of the ones tested for, for
describing the ollapsed data in Experiment 1l is close
to a dty-block rule (Het sSmHTSImSTB (r=1.1;1), Hom
opt (r=1) and Hom cit). It is not, in this gedal case,
posshle to view this as appating either of
homogenous or heterogeneous models snce the dty-
block metric is the sum of the differences for the
constituting dimensions. Therefore, there is no
difference between a homogenous city-block rule and a
heterogeneous rule where dty-block rules are used
within all subspaces.

As oppased to experiment |, the Minkowski-r values
(for the best models) did not increase in magnitude with
increased dmensionality.

The heterogeneous models with the lowest errors for
the average data for ead of the threesubspacedivisions
are presented in Table 6. As, for the @llapsed data, the
optimal  “heterogeneous’ rule for the *“origina”
subspacedivision was close to the dty-block metric for
both subspaces, this was necessrily the cae dso for
the “odd’ subspacedivisions.

Table 6: Different subspacedivisions and their errors.

Subspacedivision Model Err

height/tilt; str./bri. Het SmMHTSMSTB  3.483
height/str.; tilt/bri. Het sSmHSTsmTB  3.523
height/bri.; tilt/str. Het SmHBsSmMTST  3.523

General Discussion

The dm of this paper isto investigate and communicae
the ideathat division of feaures/dimensions of objeds
into separate subspaces - when applicable - posshly
could increase descriptive power.



Experiment | involved pairs of dimensions previously
found to be combined best by the dty-block and the
Euclidean metric, respedively. The Euclidean rule
turned out to badly describe the data. Instead, a
heterogeneous rule mbining the two subspaces
formed by the intuitive division, was found to provide
the best description. The r:s for the two subspaces
found in this experiment rhymes with previous research
in that they redly possess different metric properties
and that the r for saturation/brightness was higher than
for height/tilt. However, both r:s found were somewhat
larger compared previous findings for the separate two-
dimensional subspaces. The dimensions involved in
Experiment | were dl expeded to be pairwise
separable. Also in the four-dimensional case, the best
describing metric turned out to be the dty-block rule.

The idea presented recaeved suppat in that the
genera pattern identified from the experiments is that
phenomenologicd dissmilarity can be more acarately
described with a heterogeneous rule taking aspeds of
the dimuli into consideration, compared to a
homogenous Minkowski-metric.

There ae anumber of open questions. One relevant
issie is how the subspaces themselves sould be
combined. In this paper, only one of many possble
ways was investigated. Another question concerns the
magnitudes of the r:s identified. Since the r:s estimated
in Experiment 1l were not larger compared to what
could be expeded for pairwise cmbinations of the
congtituent dimensions, it is apparent that the incresse
in magnitude of r:s as found in Experiment I, is not
generdisable to al complex stimuli. However, it isin
the developmental literature well documented that the
separability changes with experience (see eg. Smith,
1980, with the diredion from integrality to
separability. This pattern also apply to short term
leaning (Johannesson, 2001H. A passble reason for
the relatively large r:s in Experiment | could thus be
that stimuli with contents of integrality are harder to
“lean” than stimuli composed by separable dimensions.
If so, the ris could posshly stabilise & a lower
magnitude for sufficiently experienced subjeds. If not,
it could simply be that the spedfic metric properties
asciated with integral/separable dimensions only are
true in the @ntext of singe pairs of dimensions, i.e.
depending on if they are mbined o not. An
interesting set of stimuli that could be used in order to
explore this (and athers) isaue further is multimodal
stimuli composed of the pairwise integral dimensions of
pitch/loudnessand hue/saturation.

The results presented clealy motivates further
reseach on the ideathat information integration could
be described as a ombination of distances within
different subspaces. More research on if, how and when
information integration behaviour can be described in
terms of combinations of subspaces may shed light on

how we interad with the inherently high-dimensional
red world. For example, Edelman & Intrator (1997
discussthe necessty of low dimensionality for leaning
in perceptual tasks - known as ‘the aurse of
dimensionality’. However, even if we dways use low-
dimensional representations internaly, even for
cognition, if these representations involve more than
two dmensions, cognitive science have interesting
problemsto solve.
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