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Abstract 
 
This paper compares four models of the processes and 
representations in probability judgment. The models rep-
resent three principles that have been proposed in the lit-
erature: 1) the representativeness heuristic (interpreted 
as relative likelihood or prototype-similarity), 2) cue-
based relative frequency, and 3) similarity-graded prob-
ability. An experiment examined if these models account 
for the probability judgments in a category learning task. 
The results indicated superior overall fit for similarity-
graded probability throughout training. In the final block, 
all models except similarity-graded probability were re-
futed by data.  

Introduction 
Where do probability judgments come from? This ques-
tion has been fiercely debated the last decades in re-
search on judgment under uncertainty. In the late sixties 
the conclusion was that probability judgments are fairly 
accurate reflections of extensional properties of the 
environment such as frequencies (Peterson & Beach, 
1967). This changed with the influential heuristics and 
biases program in the seventies and eighties, which 
emphasized that probability judgments are guided by 
intensional aspects like similarity (Kahneman, Slovic, 
& Tversky, 1982). The nineties saw a renewed interest 
in the idea that extensional properties are reflected in 
peoples’ probability judgments as specified by the eco-
logical models (Gigerenzer, Hoffrage, & Kleinbölting, 
1991; Juslin, 1994). A third alternative combines inten-
sional and extensional properties in an exemplar model 
to produce similarity-graded probabilities (Juslin & 
Persson, 2000). 

Only rarely have these accounts been contrasted in 
studies that chart the processes and representations that 
underlie probability judgments. We compare four mod-
els of how people make probability judgments in a 
category learning task. The task involves assessment of 
the probability that a probe with feature pattern t be-

longs to one of two mutually exclusive categories, A or 
B. For example, a physician may assess the probability 
that a patient with symptom pattern t suffers from one 
of two diseases. The models represent three principles 
that have been proposed in the judgment literature: the 
representativeness heuristic (two versions), cue-based 
relative frequency, and similarity-graded probability. 
We present a category structure that allows us to con-
trast predictions derived from these hypotheses. 

Representativeness Heuristic 
According to the representativeness heuristic, people 
judge the probability that an object or event belongs to 
a category on the basis of the degree to which it is rep-
resentative of the category, or reflects salient features of 
the process that generated it (Kahneman et al., 1982). 
The representativeness heuristic is routinely evoked 
post hoc to explain cognitive biases but has not been 
subjected to careful tests in inductive learning tasks. 

A relative-likelihood interpretation of representative-
ness states that the probability judgment p(A) that probe 
t belongs to A is made by comparing the likelihood of t 
in category A relative to its likelihood in categories A 
and B: 
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where f(t|A) and f(t|B) are the relative frequencies of 
feature patterns identical to t in categories A and B, 
respectively. To allow for pre-asymptotic learning 
(Nosofsky, Kruschke, & McKinley, 1992) and response 
error in the use of the overt probability scale (Erev, 
Wallsten, & Budescu, 1994), all models in this paper 
are equipped with a free parameter d for dampening. 
The dampening effectively pulls the predictions to-
wards .5 (e.g., an un-dampened prediction of 1 becomes 
somewhat less extreme as a result of d). Eq. 1 implies 
that the probability judgment that, say, a patient with 
symptom pattern t has disease A is a direct function of 



the likelihood of these symptoms given disease A.1 
A prototype interpretation of representativeness is 

that the probability judgments derive from the similari-
ties S(t|PA) and S(t|PB) of t to the category prototypes PA 
and PB, respectively: 
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where the similarity is computed by the multiplicative 
similarity rule of the context model (Medin & Schaffer, 
1978), 
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where y is a prototype (as in Eq. 2 above) or an exem-
plar (as in Eq. 5 below). The value of dj is 1 if the val-
ues on feature j match and s if they mismatch. Similar-
ity s is a free parameter in the interval [0, 1] for the 
impact of mismatching features. 

On this view, the probability judgment that a patient 
with symptom pattern t has disease A is a function of t’s 
similarity to the prototypical symptom pattern for dis-
ease A. The prototype is defined by the modal (i.e., 
most frequent) feature value in the category on each 
feature dimension. When the feature values are equally 
common, we selected the feature value that generated 
the more frequent overall pattern in the category. 

Cue-Based Relative Frequency 
The idea that probability judgments derive from cue-
based relative frequency is represented by Probabilistic 
Mental Model theory (PMM-theory; Gigerenzer et al., 
1991; see e.g., Juslin, 1994, for similar ideas). These 
ideas have been used to scaffold global predictions in 
studies of realism of confidence, but not been tested in 
studies of inductive learning. 

In the current context, we interpret PMM-theory as 
suggesting that the probability judgment that probe t 
belongs to category A is a function of the cue value (α1) 
of the single most valid cue that can be applied: 
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where F(A|α1***) and F(B|α1***) are the frequencies 
of category A and B exemplars with cue value α1, re-
spectively, and the symbol “∗” denotes that the other 
cue values are discarded (there are four features in the 
experiment presented below). Eq. 3 represents the rela-
tive frequency of category A conditional on presence of 
cue value α1. Thus, a subjective probability judgment is 
                                                           

1 “Direct function” means that the predicted probability 
judgments are a function of likelihoods alone, not likelihoods 
and prior probabilities, as implied by Bayes’ theorem. 

a reflection of the validity of the cue with the highest 
cue-validity that is present in the event or object being 
judged. This strategy is known as Take The Best (TTB) 
meaning that you rely on the cue with the highest valid-
ity (Gigerenzer, Todd, & the ABC Group, 1999). 

Similarity-Graded Probability 
A class of models that combines intensional and exten-
sional aspects is exemplar models in categorization 
research. In exemplar models, decisions are made by 
comparing new objects with exemplars stored in mem-
ory. The context model (Medin & Schaffer, 1978) re-
sponds to both similarity (intensional property) and 
frequency (extensional property) in general, and to only 
one of these factors in predictable circumstances (Juslin 
& Persson, 2000). PROBEX (i.e., PROBabilities from 
EXemplars; Juslin & Persson, 2000) is a model of 
probability judgment based on the context model. 

With PROBEX, probability judgments are made by 
comparisons between the probe t and retrieved exem-
plars xi (i = 1…I). The exemplars are represented as 
vectors of D features (in the present experiment, D=4 
and the features are binary). Continuing with the exam-
ple of medical diagnosis, a patient with symptom pat-
tern t leads to retrieval of stored exemplars of previous 
patients with similar symptoms and their diagnoses. 
The probability judgment is a weighted average of the 
outcome indices c(xi) for the exemplars, where c(xi)=1 
for exemplars in category A and c(xi)=0 for exemplars 
in category B. The weights in the average are the re-
spective probe-exemplar similarities S(t|xi): 
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where similarity is computed from Eq. 3. This hypothe-
sis implies that if a new patient with symptom pattern t 
is similar to many exemplars xi with diagnosis A, the 
probability that the new patient has disease A is high. 

The complete version of PROBEX involves a 
sequential sampling of exemplars, but this aspect is 
ignored in the present application. This effectively 
reduces Eq. 5 to the original context model (Medin & 
Schaffer, 1978) with a dampening (see Nosofsky et al., 
1992, for a similar formulation), but with one crucial 
difference: p(A) does not refer to a predicted proportion 
of category A classifications, but to a prediction of a 
probability judgment. 

With similarity parameter s=0, only exemplars with 
feature patterns identical to t affect the judgment and 
Eq. 5 emulates a “picky frequentist” (Juslin & Persson, 
2000).2 Ignoring the dampening d, Eq. 5 then computes 

                                                           
2 This version of Eq. 5 is formally identical to Bayesian es-

timation of a probability with the Beta-distribution and pa-
rameters α and β equal to .5d. 



the relative frequency of category A among exemplars 
with identical features. For s>0, Eq. 5 computes a simi-
larity-graded probability that is both affected by the 
frequency of exemplars, and the probe-exemplar simi-
larities. Note that, although PROBEX responds to simi-
larity, it is not identical to the representativeness heuris-
tic. For example, PROBEX (Eq. 5) cannot produce a 
conjunction fallacy, unless amended with auxiliary 
assumptions of some sort (Juslin & Persson, 2000). 
PROBEX has been fitted to people’s probability judg-
ments in a general knowledge task (Juslin & Persson, 
2000) but not been tested in inductive learning tasks. 

Category Structure and Predictions 
The problem with contrasting these three hypotheses is 
that in most category structures, they generate highly 
correlated predictions. Table 1, however, provides one 
category structure that implies qualitatively distinct 
predictions for certain critical exemplars (Figure 1). 
 
Table 1: The categories with the 20 x 3 exemplars. 
 
X   C1  C2  C3  C4    C5  C6  C7  C8    C9  C10 C11 C12    Category 
1     1    1    1    1      3    3    3    3      5    5    5    5       A  A  A 
2     1    1    1    1      3    3    3    3      5    5    5    5       A  A  A 
3     1    1    1    1      3    3    3    3      5    5    5    5       A  A  A 
4     1    1    1    1      3    3    3    3      5    5    5    5       A  A  B 
5     1    1    1    1      3    3    3    3      5    5    5    5       A  B  B 
6     1    0    0    0      3    2    2    2      5    5    5    4       A  A  A 
7     1    0    0    0      3    2    2    2      4    4    4    4       A  A  B 
8     1    0    0    0      3    2    2    2      4    5    4    4       A  A  B 
9     0    0    0    0      3    2    2    2      4    4    4    4       A  A  B 
10   0    0    0    0      3    2    2    2      4    5    4    4       A  A  B 
11   1    1    0    0      3    2    2    2      4    4    4    4       B  A  B 
12   1    1    0    0      3    2    2    2      4    4    5    4       B  A  B 
13   0    1    0    0      3    2    2    2      4    4    4    4       B  A  B 
14   0    1    0    0      3    2    2    2      4    4    5    4       B  A  B 
15   0    1    0    0      3    2    2    2      4    4    4    4       B  A  B 
16   0    0    1    1      3    2    2    2      4    4    4    5       B  A  B 
17   0    0    1    1      3    2    2    2      4    4    4    4       B  A  B 
18   0    0    1    1      2    3    3    3      4    4    4    4       B  B  B 
19   0    0    1    1      2    3    3    3      4    4    4    4       B  B  B 
20   0    0    1    1      2    3    3    3      4    4    4    4       B  B  B 

 
The design involves 60 exemplars with four features 

each, organized into three substructures. The 20 exem-
plars in the first substructure have features C1-C4, the 
20 in the second substructure have features C5-C8 and 
the last 20 have features C9-C12. The feature has two 
possible values (0 vs. 1, for C1-C4; 2 vs. 3 for C5-C8; 4 
vs. 5 for C9-C12). The last three columns headed by 
“Category” specify whether the exemplar is in category 
A or B. The first column is for exemplars with features 
C1-C4, the second for exemplars with features C5-C8, 
and the third for exemplars with features C9-C12. 

In the first part of the experiment, the 60 exemplars 
are presented with feedback about whether they belong 
to category A or B. In the second part, the participants 

are asked to estimate the probability that probes with 
certain feature patterns belong to category A. There are 
fifteen distinctive feature patterns, six for features C1-
C4, three for features C5-C8, and six for features C9-C12. 
The participants estimate the probability of category A 
for all fifteen patterns. The critical patterns are 1111 for 
features C1-C4, 3333 for C5-C8 and 5555 for C9-C12. 
Across these, the models provide distinctly different 
predictions (see Figure 1). 
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Figure 1: Predicted probability judgments. All predic-
tions are derived with d=0. The predictions for repre-
sentativeness with prototype similarity (P) are based on 
s=.1. The predictions for PROBEX are based s=0 (i.e., 
Picky frequentist). 
 

For example, the predictions for feature pattern 3333 
are derived as follows. The representativeness heuristic 
with a likelihood interpretation implies p(A) = 
.25/(.25+.25) = .5: the probe is identical to 25% of the 
exemplars in category A and 25% of the exemplars in 
category B. In regard to a representativeness heuristic 
with prototype similarity, we note that the prototypes 
for category A and B in the second substructure (i.e., 
based on C5-C8) are 3222 and 2333, respectively. Ignor-
ing the dampening d, Equation 2 implies the prediction 
s3/(s3+s). The prototype for A differs on three features 
and the prototype for B on one feature. The prediction 
depends on the parameter s, but it will generally be low 
and always lower than .5. With cue-based relative fre-
quency, p(A) = 16/(16+1) = .94. Given the value of 3 
for the most valid cue C5, 16 of 17 exemplars belong to 
category A. According to the picky frequentist predic-
tion by PROBEX (s=0), p(A) = 4/5 = .8. Four out of 
five exemplars with identical feature patterns belong to 



category A. At s>0, the prediction falls below .8. Pre-
dictions for the other two critical patterns are derived in 
the same way. 

Note in Figure 1 that, depending on the model, the 
probability judgments for the three critical patterns 
have a different rank order. These predicted rank orders 
are a priori and not dependent on the parameters (i.e., s 
or d). By comparing the observed with the predicted 
rank order, we get a qualitative test of the models. In 
addition, we can evaluate the quantitative fit of the 
models to the judgments for all 15 feature patterns. 

Method 

Participants 
Twenty-four undergraduate students (10 men and 14 
women) in the age of 19 to 32 (average age = 23.3) 
participated. The participants where paid between 65-
86 SEK depending on their performance. They received 
30 SEK plus 1 SEK for each correct answer in the last 
learning block. 

Apparatus and Materials 
The experiment was carried out on a PC–compatible 
computer. In each of the four training blocks, the pro-
gram first presented the 60 exemplars from Table 1. 
The task involved judgments for 60 companies, where 
20 companies belonged to each of three countries (sub-
structures). Each exemplar had four features that dif-
fered depending on the country. The features are pre-
sented in Table 2. The features and names of the coun-
tries were chosen to be as neutral as possible. In the test 
phase after each training block, the program presented 
each of the 15 distinct feature patterns twice. 

Design and Procedure 
A two-way within-subjects design was used. The inde-
pendent variables were the number of training blocks 
(four blocks) and category substructure (three substruc-
tures). The dependent variable was the probability 
judgments. The specific assignment of concrete cue 
labels (see Table 2) to the abstract category structure 
(see Table 1) was varied and counterbalanced across the 
participants. Thus, each concrete label in Table 2 ap-
peared equally often in each of the three substructures 
and equally often in the role of each of the abstract 
features denoted C1 to C12 in Table 1. 

The participants were to act as stockbrokers assigned 
to invest a large sum of money in three countries about 
which they knew nothing. They were told that it is 
usually enough to know four company features to know 
if the stock will rise or fall in the next twelve-months, 
but that the features differ between the countries. 

 

Table 2: Twelve concrete features used in the experi-
ment. 
 
Features                    Descriptions 
1) Listed at the LAP / IPEK stock exchange? 
2) Less / more than 1000 employees?  
3) Commercials on television / the radio? 
4) Changed owner / merged in last three years? 
5) Less than / more than three years old? 
6) Give money to charity / sponsor sports team? 
7) Active in specific region / whole country? 
8) Co-operation with university / own research department? 
9) In state-financed SKATOS / TAPOS program? 
10) Primarily export-based / import-based? 
11) Affirmative action based on gender / ethnic background? 
12) Stock risen / fallen during the last 12-month? 

 
The participants were told that the first phase is a 

training session where they are presented with 60 com-
panies, each described by four features that depend on 
the country. The features describe the companies as 
they were twelve months ago. They were to guess 
whether the stocks rose (A) or fell (B) in value in the 
last year. After each judgment, they received feedback 
on the actual development. The four features were pre-
sented on the screen. Below the question “Will the 
stock-value rise or fall during the next twelve month?” 
appeared. The participant answered s (short for the 
Swedish word for rise) or f (short for the Swedish word 
for fall). Thereafter, the correct answer appeared to-
gether with the company’s four features. 

In the test phase, the participants were told that they 
were to see a set of companies as they are today and 
judge the probability of an increase in their stock-value 
and that the markets are identical on all parameters 
today as they were one year ago. The feature patterns 
were presented in the same way as in the training phase, 
but with the question: “What is the probability that the 
stock of this company increases in value in the next 12 
months?” They were told to answer in percentages and 
even up to 0, 10…100. 

The test blocks consisted of two assessments of the 
15 distinct feature patterns, one for rising stock-value 
(A) and one for falling stock-value (B). This allowed us 
to examine the additivity of the probability judgments 
(i.e., if the mean probability assigned to A and B for a 
feature pattern sum to 1). To get reliable data we re-
coded probability-B judgments into probability-A 
judgments by subtracting the probability-B judgments 
from 1. There was no feedback. The order of the prob-
ability judgments was counterbalanced within partici-
pants. The training and test blocks were repeated four 
times. The entire procedure took between one hour and 
fifteen minutes to two hours. 



Results 
Figure 2 presents mean probability judgments for the 
critical feature patterns in each of the four test blocks. 
The data for the third block shows a tendency to agree 
with the prediction by PROBEX. The fourth block 
exhibits clear agreement with the prediction by 
PROBEX. The confidence intervals for exemplars, 
1111 and 5555 are clearly separated and the predicted 
decreasing trend is observed which refute all models 
except PROBEX. 
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Figure 2: Means with 95% confidence intervals for the 
estimations of the critical exemplars for the four test 
blocks. 

 
For the first two blocks, the data reveal no clear trend 

favoring any of the four models. One tentative interpre-
tation of this result is that it reflects a mix of individual 
strategies in the early stages of training. To explore this 
more carefully, we fitted the four models to the data 
from all 15 distinct feature patterns. The probability 
judgments proved to be additive on average (i.e., the 
mean probability assigned to A and B for a feature pat-
tern sum to 1). 

The models were fitted to the mean probability judg-
ments for each of the 15 distinct feature patterns with 
Root Mean Square Deviation (RMSD) as error func-
tion. This was done separately for each of the four test 
blocks. The model based on the representativeness 
heuristic as relative likelihood has one free parameter 
(d), representativeness heuristic as prototype similarity 
has two free parameters (s & d), cue-based relative 
frequency has one free parameter (d), and exemplar-

based retrieval (PROBEX) has two free parameters (s & 
d). The results are summarized in Table 3. 

Table 3 verifies that in the later stages of training, 
PROBEX provides a good fit to the data. Because the 
standard error of measurement is .05, the RMSDs for 
PROBEX (.054 & .058) come close to saturating the 
data. Considering all four blocks it is clear that cue-
based relative frequency fits the judgments poorly in all 
blocks. Although the qualitative pattern in Figure 1 for 
blocks 1 and 2 does not accord with PROBEX, we find 
that it is the best fitting model throughout training. The 
models based on the representativeness heuristic exhibit 
moderate fit early in training, which successively 
deteriorates with training. 

 
Table 3: Fit of the models as a function of test block in 
terms of RMSD and coefficients of determination r2.  
 

 Test Block 
Model Index 1 2 3 4 

RMSD .087 .111 .105 .124 Repr. (L) 
r2 .65 .69 .70 .73 

RMSD .094 .123 .124 .158 Repr. (P) 
r2 .61 .62 .58 .55 

RMSD .139 .193 .188 .234 Cue-based 
r2 .20 .21 .23 .22 

RMSD .060 .067 .054 .058 PROBEX 
r2 .87 .92 .92 .95 
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Figure 3: The percent of participants best described by 
each of the four models, in each of the four test blocks. 

 
Finally, these conclusions were verified at the level 

of individual participants. The same model-fitting pro-
cedure was performed for each participant, with the 
exception that all models were fitted with one free pa-
rameter (d). In each block, the percentage of partici-
pants for which each model provided the best fit was 
ascertained. Figure 3 shows that PROBEX is the most 
frequent winner, although a minority of participants is 



better fitted by representativeness as relative likelihood, 
mostly in the early test blocks. 

Discussion 
Research on subjective probability judgment has been 
characterized by a normative stance, where judgments 
are compared to norms from probability theory. Cogni-
tive theory has primarily been evoked to provide post 
hoc explanations, as in most applications of the repre-
sentativeness heuristic, or as scaffolds for more general 
predictions, as in the applications of cue-based relative 
frequency. The point of departure for our research is the 
need to make closer contact between cognitive theory 
and judgment research in controlled studies that allow 
us to support or refute core concepts in judgment re-
search, such as the representativeness heuristic. 

The results reported here provide clear support for 
the hypothesis of similarity-graded probability (Juslin 
& Persson, 2000). That an exemplar model is success-
ful may not appear surprising considering the impres-
sive performance of exemplar models in categorization 
studies (Nosofsky & Johansen, 2000). Yet, the results 
are at variance with crucial ideas in judgment research, 
like that of a representativeness heuristic (Kahneman et 
al., 1982) or cue-based relative frequency (Gigerenzer 
et al., 1991; Juslin, 1994). 

The second to best fitting model was representative-
ness as relative likelihood, but this may be spurious as, 
the crucial feature patterns in Figure 1 aside, the predic-
tions by the models tend to be correlated. However, the 
superiority of PROBEX is not a mere consequence of a 
greater inherent flexibility. To demonstrate this, we 
used the predictions for the last test block by represen-
tativeness as relative likelihood as fictive “true data” 
and added a normally distributed random error with a 
standard deviation of .05 to mimic measurement error. 
To this fictive data set, representativeness provided a 
superior fit (RMSD=.053, r2=.97) as compared to 
PROBEX (RMSD=.096, r2= .83). Thus, the better fit of 
PROBEX appears to reflect more than larger flexibility 
in the face of random error. 

The best-fitting version of PROBEX (s=.21) in the 
last test block is not the Picky frequentist version iden-
tical to Bayesian estimation of the probability with a 
Beta-distribution (see Footnote 2). This suggests that, at 
least in regard to this more simplistic implementation of 
a Bayesian algorithm, PROBEX provides a better fit to 
data. 

The main objection against the present study is per-
haps that it is a single study involving one specific 
category structure. The category structure used here 
was guided by the aim of allowing qualitatively distinct 
predictions by the four models. This category structure 

may accidentally favor one model over another. Per-
haps, a category structure more coherently organized 
around prototypes yields more support for representa-
tiveness as prototype similarity? Likewise, a more fea-
ture-rich category structure that posits more demand on 
information search may yield more support for cue-
based relative frequency in the form of TTB (Gigeren-
zer et al., 1999). Only further research can tell. In any 
event, these hypotheses will have to count with a seri-
ous contestant in the form of PROBEX. 

Acknowledgments 
Bank of Sweden Tercentenary Foundation supported 
this research. 

References 
Erev, I., Wallsten, T. S., & Budescu, D. V. (1994). 

Simultaneous over- and underconfidence: The role of 
error in judgment processes. Psychological Review, 
101, 519-527. 

Gigerenzer, G., Hoffrage, U., & Kleinbölting, H. 
(1991). Probalistic mental models: A Brunswikian 
theory of confidence. Psychological Review, 98, 506-
528. 

Gigerenzer, G., Todd, P. M, & the ABC Research 
Group. (1999). Simple heuristics that make us smart. 
New York: Oxford University Press.  

Juslin, P. (1994). The overconfidence phenomenon as a 
consequence of informal experimenter-guided selec-
tion of almanac items. Organizational Behavior and 
Human Decision Processes, 57, 226-246. 

Juslin, P., & Persson, M. (2000). Probabilities from 
exemplars (PROBEX): A “lazy” algorithm for prob-
abilistic inference from generic knowledge. Manu-
script submitted for publication. 

Kahneman, D., Slovic, P., & Tversky, A. (Eds.) (1982). 
Judgment under uncertainty: Heuristics and biases. 
New York: Cambridge University Press. 

Medin, D. L., & Schaffer, M. M. (1978). Context the-
ory of classification learning, Psychological Review, 
85, 207-238. 

Nosofsky, R. M., & Johansen, M. K. (2000). Exemplar-
based accounts of “multiple-system” phenomena in 
perceptual categorization. Psychonomic Bulletin and 
Review, 7, 375-402. 

Nosofsky, R. M., Kruschke, J. K., & McKinley, S. C. 
(1992). Combining exemplar-based category repre-
sentations and connectionist learning rules. Journal 
of Experimental Psychology: Learning, Memory, and 
Cognition, 18, 211-233. 

Peterson, C. R, & Beach, L. R. (1967). Man as an intui-
tive statistician. Psychological Bulletin, 68, 29-46. 

 


	Introduction
	Representativeness Heuristic
	Cue-Based Relative Frequency
	Similarity-Graded Probability
	Category Structure and Predictions
	Method
	Participants
	Apparatus and Materials
	Design and Procedure

	Results
	Discussion
	Acknowledgments
	References

