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Abstract

Instructedcatgyory learningtasksinvolve the acquisition
of a categorizationskill from two source®f information:
explicit rules provided by a knowledgeableteacherand
experiencewith a collection of labeledexamples. Stud-
ies of humanperformanceon suchtaskshave shavn that
practice cateyorizing a collection of training examples
canactuallyinterferewith the properapplicationof ex-

plicitly provided rulesto novel items. In this paper the
normatvity of such exemplarbasedinterferenceis as-
sessedy confrontinga model of optimal memory per

formancewith sucha taskand comparingthe “rational”

models behaior with thatexhibited by humanlearners.
Whenaugmentedvith a rehearsamechanismthis opti-

mal memorymodelis shavn to matchhumanrespond-
ing, producingexemplarbasednterferencey relyingon

memoriesof similar training setexemplarsto categorize
anovel item, in favor of recallingrule instructions.

I ntroduction

Contemporanstudiesof humancateyory learninghave
tendedto focuson the acquisitionof generaknowledge
abouta new conceptexclusively from exposureto a col-
lection of labeledexamples. In commonlearningervi-
ronmentshowever, studentsattemptingto learna cate-
gorizationskill arefrequentlyprovidedwith morethana
setof trainingexamples.In particular learnersareoften
explicitly instructedin the natureof a new category be-
fore being presentedvith instances.They are provided
with definitional sentencesnd explicit rules (e.g., “an
equilateraltriangle has at leasttwo sidesof the same
length” or “bugswith six legs areinsects”). Direct in-
structionof this kind canrapidly provide a basicunder
standingof anew cateyory, while experiencewith exam-
plescanfurther shapeandrefinethatinitial understand
ing (Klahr andSimon,1999).

While it is commonfor the procesof explicit instruc-
tion following andthe processof inductionfrom exam-
plesto cooperatdo producequick androbustlearning,
therearesituationsn whichthesewo learningprocesses
actually compete. Specifically practiceat classifyinga
setof trainingexamplescancausdearnerdo violate ex-
plicitly provided categorization rules when classifying
novel items. Extensve experiencewith examplescan
leadlearnersto cateyorize novel instancesaccordingto
similarity to training items,ratherthanaccordingto cat-
egorizationrulescommunicatedhroughexplicit instruc-

tion. Thus,novel itemswhich arehighly similarto train-
ing examplesfrom anothercateyory cometo bemisclas-
sifiedasaresultof practice.

This exemplarbasednterferenceeffect, in which ex-
periencewith examplednterfereswith properinstruction
following, wasinvestigatedy Allen andBrooks(1991),
aswell asothers(Brooksetal., 1991;Nealetal., 1995;
NoelleandCottrell, 2000).Suchinterferencen cateyory
learningis mirroredby similar difficultiesin awide va-
riety of learningcontets, suchaswhen studentscome
to solve math or scienceproblemsby analogyto previ-
ouslyseemproblemsyratherthanby applicationof formal
principlesandtechniquesommunicatedhroughdirect
instruction.Learnersappeato have atendeng to disre-
gardperfectlyvalid explicit advicein favor of knowledge
inducedfrom experiencesvith examples.

Exemplarbasednterferencamight be seenasthe re-
sult of limitations of the cognitive system,suchasim-
perfectworking memory efficacy (Noelle and Cottrell,
2000)or difficultiesrecallingandapplyingabstract|in-
guistically encoded,rules. There is anotheralterna-
tive, however. It is possiblethathumanlearnersneglect
explicit instructionsin favor of experiencedexemplar
similarity information becausehe latter form of infor-
mation tendsto be more reliable in a wide variety of
learningcontets. Exemplarbasednterferencemay be
theresultof anessentiallynormative procesof weight-
ing sourcef catggoryinformationaccordingo thepre-
viously establisheditilities of thosesources.

Therearemary aspect®f commonlearningsituations
which may encouragestudentso rely more heavily on
examplesthanon explicit rules. Considey for example,
how theinstructionsprovided by teachersarefrequently
approximateand heuristic. Advice is often implicitly
limited to a particularrangeof circumstancesandthere
are often exceptions,even within this range,to explic-
itly providedrules. Also, teachersare sometimesn er-
ror. In short, humanlearnersmay have strongreasons
to doubtthe perfectaccurayg of offered categyorization
rules. In comparisongxemplarsimilarity may be seen
as a highly reliable indicator of categgory membership.
Most categories,afterall, involve clustersof similar ob-
jects,suggestinghatsimilarity might bethe besttool for
predictingthe category labelsof novel instances.

Even if considerationsof teacherreliability are ig-
nored, there are other rational reasongor a learnerto



rely preferentiallyon training experiences.In general,
recalling pastexperienceswith featuressimilar to those
of the currentsituationis often more usefulthanrecall-

ing dissimilar experiences.Thus, when facedwith the

taskof cateyorizing a novel stimulusitem, learnersmay
be naturallyinclinedto recall othersimilar itemsrather
thanan explicit rule, which, dueto its linguistic encod-
ing, may bearlittle surfacesimilarity to the situationat

hand.Also, therecollectionof experiencesvhicharere-

centandfrequentlyrecurringis, on averagemoreuseful
whenfacinga novel challengethanrecallingrare expe-

riencesfrom one’s distantpast. Thus,whenperforming
an instructedcategory learningtask, it may be reason-
ablefor alearnerto selectively recall the training items
which wererecentlyandrepeatedlystudiedin favor of a

briefly presentedule. In short,we may conjecturethat
exemplarbasedinterferencearisesfrom a rational ten-

deng to rely on similar, recent,andfrequentpastexpe-

rienceswhenfacedwith anovel situation.

In orderto evaluatethis conjecturethis paperreports
on the modelingof the exemplarbasednterferencere-
sults of Allen and Brooks (1991) using the normatve,
or “rational”, accountof memoryformulatedby Ander
son (1990). The goal is to investigatethe degree to
which exemplarbasedinterferencecan be explainedin
termsof a Bayesoptimal learningprocessgiven some
assumptionsaboutthe commondemandglacedon hu-
man memory The humanperformanceresultsare re-
viewedfirst, followedby adescriptiorof Andersonsop-
timal memorymodel. Theresultsof applyingthe model
to this domainarethenpresented.

Human Performance

Allen andBrooks(1991)performeda numberof exper

imentsdemonstratinghe way in which experiencewith

labeledtraining exemplarscaninterferewith instructed
rule following. In their Experimentl, learnerswere
asled to categorize cartoonillustrationsof fictional an-
imalsinto one of two categories,basedon how the ani-

malsweresaidto constructtheir homes:the “builders”

and the “diggers”. The appropriatecateyory for each
animalwasstrictly determinedby it's physicalfeatures.
Eachanimalwascomposedf specificselectiongor five

binary attributes: angularbody shapeor roundedbody
shape,spotsor no spots,shortlegs or long legs, short
neckor long neck,andtwo legsor four legs. Only three
of theseattributeswere ever relevant for classification,
however: body shape presencer absencef spots,and
leg length. The animalswere always depictedagainst
color backgroundsdisplayingfour differentoutdooren-
vironments. From this spaceof 2° x 4 = 128 different
possiblestimuli, only 16 were actuallyused. Thesel6

itemswerecarefullychosento includetwo animalswith

eachpossibldevel of thethreerelevantattributes. Their-

relevantfeaturesvereselectedothateachstimulusitem

would have exactly one“partner” item — anitemwhich

differedfrom it only in thepresencer absencef spots.
Otherwise eachanimaldifferedfrom eachotheranimal
in atleasttwo attributes.

Experimentaparticipantsvere providedwith explicit
categyorizationrules for discerningthe “builders” from
the “diggers”. Thesealwaystook the form of “2 of 3”
rules,in which atargetcateyory wasdescribedasall an-
imals with at leasttwo of a list of threefeatures(e.g.,
buildershave two or moreof the following features:an-
gularbodyshapespots,longlegs). Theruleswerecare-
fully chosersothatthe 16 stimuli wereequallysplit be-
tweenthetwo categyories.Also, the exemplarswerepar
titionedinto atrainingsetandatestingsetsothatnotwo
“partnered’itemswerein the sameset. This resultedin
exactly half of the testingsetitemshaving their partner
itemsin the oppositecatayory. Thesetestingitemswere
theonesfor which interferencevaspredicted.

The learnerswere presentedwith a training phase
which consisteaf seeingeachof the8 trainingsetitems
five times,presentedn arandomorder, for atotal of 40
trials. Whena stimulusimageappearedn the screen,
learnerswere to categorize it as quickly as possible,
without sacrificingaccurag. Then, a sequencef two
slideswould be shawn, illustrating how the animal ac-
tually constructedts home,identifying it asa builder or
a digger A subsequentesting phaseinvolved solicit-
ing cateyorizationresponsefrom the participantswith-
out providing ary form of feedbackon their decisions.
During this testingphase gachtraining setstimuluswas
presented! timesandeachtestingsetstimuluswaspre-
sentedonce for atotal of 40testingtrials.

Thereweretwo mainresultsof this experiment.First,
accurag on theitemswhose“partners”werein the op-
positecateyory was muchworsethanon the othertest-
ing setitems — around55% correctas comparedto
80%. This was a strongindication of exemplarbased
interference. Second,the responsetime for correctly
classifieditemswasmuchlargerfor itemswhose“part-
ners”werein theoppositecatgory. Thiswasinterpreted
as extra caution on the part of the learnerswhen fac-
ing these“tricky” stimulusitems. In otherwords, even
whenexemplarbasednterferencelid not causeerror, it
atleastcauseda slowing of behaior.

Allen and Brooks arguedthat explicit memoriesfor
individual stimulusitemsplayedanimportantrolein the
productionof this interferenceeffect. The presentation
of a testingsetstimuluswas seenas provoking a recol-
lection of thatitem’s “partner” in the training set, with
the category label of that training setitem often being
assignedo the new stimulusin lieu of a label basedon
explicit rule application. Following this intuition con-
cerningthe centrality of memoryto this effect, we have
attemptedo modelthesedatausinga previously expli-
catedaccountof optimalmemoryperformance.

Anderson’s Rational Memory

The hypothesisexploredhereis thatthe behaior of the
learnerexaminedoy Allen andBrookscanbecharacter
ized asnormative — asthe naturalresultof employing
amemorysystemwhich is optimal in a Bayesiansense.
This raisesthe questionof haw anoptimalmemorysys-
tem would respondin this domain. Andersonand Mil-



son(1989)have proposeda “rational” modelof memory
which mightbe employedto addresghis question.

Initially, one may think that an optimal memoryis
a perfectmemory Everything is to be storedin every
detail, without degradation for an unlimited amountof
time. This overlooks one very important function of
memory however, andthatis to recall only thosemem-
orieswhich arerelevantto the currenttask. Without this
ability of selectve recall, a memoryis essentiallyuse-
less,evenif (or especiallyif) it containsevery detailthat
was ever experienced.Thus, the taskfacedby an opti-
mal memoryis theidentificationof thosememorytraces
which would be mostusefulin the currentsituation.

In Bayesianterms,the goal is to determine for each
memorytrace, the probability that that trace would be
useful in the currentsituation. In Anderson$ model,
this is calledthe “need probability” of a trace. An opti-
mal memoryis seenasonewhich retrievesexactly those
traceswith the highestneedprobabilitiesin the current
context. The questionthenbecomeone of calculating
theneedprobabilityfor eachmemorytrace.

In this model, the needprobability is seenasa func-
tion of two componentsthe desirability of thetraceand
theassociation betweerthetraceandthecurrentcontext.
The desirability of a memorytraceis a measureof the
averageutility of thetrace— akind of baserate of ap-
propriatenessThedesirabilityof atraceis to beinduced
from its history of use. Recentandfrequentretrieval of
amemorytraceis indicative of high desirability Theas-
sociationbetweenthe traceand the currentcontext is a
kind of normalizedlikelihood of the context giventhat
thetraceis needed.This termincreaseshe needproba-
bility with increasedsimilarity betweerthe context and
the trace. Both of thesecomponentof the needprob-
ability are seenasnormative propertiesof the situation,
unbiasedy predispositionsf theagent.In brief, theop-
timal memorysystemcomputeshe needprobability of
eachmemorytrace, conditionedon the currentcontect
andonthehistoryof pastretrievalsof thattrace.

Mathematicallyif A representshe eventthata given
memorytraceis neededn the currentcontext, Ha repre-
sentghecompleteretrieval historyof thattrace,andQ is
thecurrentcontext, thenthe conditionalneedprobability
is P(A|HA & Q), which maybedecomposedsfollows:

P(QA)
P(Q)

Note thatthis assumeshat Q andHa arebothindepen-
dentandconditionallyindependentvith respecto A. If
Q is takento becomposef a collectionof mutuallyin-
dependenfeaturesthenthis expressiomrmay be written

as:
P(i|A
P(AlHA & Q) = P(AH) x [ 2UA)

icd P()
This formulationallows for the separatealculationof a
history factor, P(A|Ha), anda context factor whichmea-
suregheassociatiometweerthememorytraceandeach
featureof the currentcontext, P(i|A).

P(AlHA & Q) = P(AlHa) x

The calculationof the historyfactorrequiressomeas-
sumptionsaboutthedesirabilityof memorytraces.Each
traceis takento startat somedesirabilitylevel, Ao, when
it is first generated.Over the rangeof memorytraces,
theseinitial desirabilitiesareassumedo have agamma
distribution with parameteb andindex v. This means
that no traceshave an initial desirability of zero, most
have somesmallinitial desirability anda very few have
a high valuefor this variable. Furthermoredesirability
is assumedo decayexponentiallyover time, with a de-
cay rate of o, wherethis rate of decayvariesover the
traces. It is assumedhat o is exponentiallydistributed
with parametein. Together theseassumptiongainta
picture of memorytraceswith variousinitial desirabil-
ities, decayingexponentiallyover time at variousrates.
Somememorytracesstart out with a high desirability
anddecayonly slowly, like, say the tracefor your own
name.Othertracesstartoutwith alow probabilityof use,
likeinstructionson how to helpaheartattackvictim, but
the desirability doesnot decaymuchwith time. Some
memoriesare very importantbut only for a shorttime,
suchasthememoryfor how muchmoney washandedo
a cashierbeforereceving change.Most trivia startout
with alow desirabilityanddecayrapidly.

One phenomenomot capturedby this characteriza-
tionis theway in which certainmemaorytracesmightbe-
comevery usefulagain,afteralong periodof unimpor
tance.To remedythis oversight,it is assumedhatmem-
ory tracesoccasionallyexperience‘revivals”, at which
time their desirabilitiesarereturnedo their original lev-
els. The probability of a revival of a memorytraceis
assumedo decayexponentiallywith the time sincethe
tracesintroduction,with ratep.

This formulation provides a characterizatiorof the
probability distribution of possibletrajectoriesof desir
ability overtime. Recall,however, thatwhatis neededs
thedistribution of historiesof actualtraceretrievals:

P(A& Ha)
P(AHp) = ———~—-

AR = ot
If we assumehata traceis retrieved with a probability
proportionalo its desirability we cancomputeP(Ha) by
integratingover all possiblevaluesof initial desirability
decayrate,andrevival history. Thisvalueis:

P(Ha) = [ [ P(Hal3& R) p(®) P(R) d3aR

whered is adecayrateandR is a particularrevival his-
tory. Notethat,in this expressiontheinitial desirability
hasalreadybeenintegratedover. The maintermin this
doubleintegrationhasthe form:

B'(n+v—-1! & i)
D=1y — 1) il:le

wheren is the numberof retrievalsin Ha, H; is thetime
of theithretrieval, r; is thetime of therevival which most

P(Ha|0& R) =



immediatelyprecededheith retrieval, andD is:

D — b+% i(l_e—es(Rm—Rj))
£

wherem is the numberof revivals,andR; is thetime of
the jth revival. All othervariablesin theseexpressions
are parameterdrom the previously discussecprobabil-
ity distributions. In short, an expressionfor the value
of P(H,) is availablein the form of the doubleintegral
above! Thisdoubleintegralrangesoveraninfinite space
of d valuesandpossiblerevival histories.In orderto esti-
matethevalueof this expressiona Monte Carlointegra-
tion maybeperformed samplingdecayratesandrevival
historiesfrom their respectre distributions. In this way,
anestimateof P(Ha) canbecalculated.

NotethatP(A & Ha) canbecalculatedn exactly the
samefashionasP(Ha) simpleby includinganadditional
retrieval of the memorytraceat the currentmoment.As
previously noted, the ratio of thesetwo probabilitiesis
theneededhistoryfactor P(A|Ha).

The calculationof the context factoris mucheasierto

perform, mostly due to somesimplifying assumptions.

To computethe contribution of the associatiorbetween
the traceandthe currentcontext, it is assumedhat the
traceis composedf featureswhich contribute indepen-
dentlyto theneedprobabilityof thetrace.Thesefeatures
areassumedo bemutuallyindependentvenwhencon-
ditionedon ary featureof the currentcontext. Thus,the
contet factorcanbewritten as:

PlA) _  PAI) _ P(i)

ile_(L P(I) i€ ile_(L XI;L P(X)

All thatremainss to determingheassociatie strengths
betweenfeaturesof the currentcontext and featuresof
thememorytrace expressedsP(x|i), which maybese-
lectedin a mannersensitve to the specificstimuli used.
AndersonandMilson (1989)shovedthatthis optimal
memory model matchedhumanperformancein mary
ways. This calculationof the probability of retrieval was
foundto predictreceny andfrequeng effects,andthe
model was shavn to be consistentwith effects arising

from varyingthetemporalspacingoetweerthepresenta-
tionsof stimuli. This complex retrieval probability com-
putationaccountedor effectsof word frequeng on the
memorizationof word lists, priming effects, and vari-
ousfan effects. Most all of thesecalculationsvereper

P(A)

formedwith fixedvaluesfor the distribution parameters:

b=100,v=2,a =25,andp = 0.04.

Modeling Exemplar-Based I nterference

Following the theorizing of Allen and Brooks (1991),
their instructedcateyory learningtaskcanbe viewed as

INotethatthis expressioris differentthanthatprovidedin
theappendixof AndersonandMilson (1989). Whenthis error
was broughtto the attentionof the authors,they provided the
softwarethatthey hadusedto performtheircalculationsit was
discoveredthatthe errorwasonly in their appendixandnotin
their software.

a memorytask. Wheninitially given the explicit rule
for cateyorizing the fictional animals,the learnermust
rememberthis rule, and it mustbe recalledwhenit is
neededto cateyorize a stimulusitem. The rule need
not always be recalled,however, asit will be sufficient
in mary casedo simply remembem previous presenta-
tion of the specificstimulusbeingviewed andits corre-
spondingcategorylabel. Thischaracterizatioof thetask
makesAndersons rationalmemorymodelapplicableto
anoptimality analysisof instructedcategory learning.

A computerprogramwaswritten which simulatedthe
performanceof Andersons rationalmemoryon the ex-
perimentaltask examinedby Allen and Brooks (1991).
Initial instruction involved the creation of a memory
tracefor the given categorizationrule, andthe retrieval
of thattracefor ten consecutre time steps representing
a study period. After this instructionperiod, the train-
ing setitemswerepresentedo the optimalmemory one
at a time, in the samemanneras they were presented
to humanparticipants.With eachpresentationthe need
probability of eachexisting memorytracewasestimated
in the context of the currentstimulus. Thememorytrace
with thehighesteedprobabilityamongthosetraceghat
containeda cateyory labelwasretrieved from the mem-
ory.2 The catagory label of the retrieved memorytrace
was taken to be the responseprovided by the optimal
memory systemto the currentstimulus. Note that the
memorytracefor theexplicit rule wasseenascontaining
thecorrectcatagyory labelfor every stimulusitem.

During the training phase the solicitation of a cate-
gorizationjudgmentfrom the memorywasfollowed by
theincorporationof performancdeedbackinformation.
The memorysystemrespondedo feedbackoy immedi-
ately retrieving the memorytrace correspondingo the
currentstimulus,or, if this wasthe first presentatiorof
the givenitem, by generatingandretrieving a new trace
for the stimulus,markedwith the givencategory label.

After thetraining phase the optimal memoryexperi-
enceda testingphaseequialentto that presentedo the
humanlearners,involving a mix of training setitems
and new testing setitems. The protocol for memory
traceretrieval during the testingphasewasthe sameas
during training, except that none of the nenly gener
ated memory tracescontainedcategory label informa-
tion, asno feedbackwasprovidedto the humansduring
this phase. Catgorizationerrorsmadeby the memory
systemduringthetestingphasewvereexaminedfor signs
of exemplarbasednterferencerelatively pooraccurag
on thosetestingsetstimuli whose“partner” itemsin the
trainingsetwerein the opposingcategory.

To calculatethe history factor of the needprobabil-
ities, the sameparametershat were usedby Anderson
andMilson (1989)wereusedn this simulation:b = 100,

2During the testingphaseit was possiblethat the memory
tracewith the highestneedprobability would be a memoryof
a previous presentatiorof an unlabeledtem. Sucha memory
would not be of muchusefor making a cateyorizationjudg-
ment. Thus,this retrieval wasrestrictedonly to thosememory
traceswhich containedexplicit category information.
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Figure 1: Resultsfrom the Optimal Memory Model:

The needprobability of the rule memorytraceis plotted
againstthe maximumneedprobabilityamongthe traces
for thetrainingsetitems.Notethatthetrainingphasean

from time step11 through50, andthe testingphaseran

from time 51 through90.

v =2,a=25,andp = 0.04. To calculatethe context
factor the presentatiorof a stimuluswas seenas pro-
viding a context consistingof 5 binaryfeatureq(i.e., the
attributesof thefictional animals)andone4-ary feature
(i.e.,thebackground)Memorytraceswvereseenascon-
tainingthesesix featuresplusanoptionalcategorylabel.
Theassociationadtrengthbetweercontext andtracefea-
tureswastakento beP(x|i) = 0.65. Thesefeaturesvere
takento be pictorial in nature,so the memorytracefor
the explicit verbalrule containedhoneof thesefeatures.
The Monte Carlo integration processemployed by the
optimal memorymodelconsistentlyused100,000 sam-
plesin thecalculationof eachneedprobability estimate.

A summaryof the results of this computationare
shawvn in Figurel. Plottedin thatgraphis the calculated
needprobability of the explicit rule memorytraceand
the highestneedprobability over the training setexem-
plar traces both over time. Note thatthe training phase
beganattime step11 andendedat time step50, andthe
testingphaseran from time step51 throughtime step
90. The primary resultshovn in this graphis that the
rule always dominatedover the exemplars. This meant
thattherule wasalwaysretrievedin preferenceo traces
for previously vieweditems. In otherwords,the optimal
memoryproducedperfectrule following behaior with
no signof interference Evenwhenthe optimalmemory
systemwas modifiedto stochasticallyretrieve tracesin
a mannerproportionalto their needprobabilities(rather
than always retrieving the trace with the highestneed
probability), errorson stimulusitemswith “partners”in
the oppositecateyory averagedonly 12%, ascompared

to the45%errorexhibitedby humans.

Theseresultswerefound, hawever, to be very sensi-
tive to theassociationastrengththatwasused P(x|i). If
this value was substantiallyincreasedabove 0.65, then
the memoriesfor the training setitemswould immedi-
atelyandpersistentlydominateoverthetracefor therule.
Undersuchhighersettingsof the associationastrength,
the optimal memorymodelwould produceinterference
during the appropriateportionsof the testingphase but
it would not produceexpectedbehaior earlyin the ses-
sion. In particular the explicit rule would almostnever
be used. In short, this initial simulationof the optimal
memory model of instructedcateyory learning did not
matchhumanperformancevery well atall.

Andersonhad somesimilar problemswith his ratio-
nal memorymodelwhen he comparedts performance
to humanbehaior (Anderson,1990). While humanre-
spondingmatchedhis rational memory calculationsin
a numberof domains,there were someaspectof hu-
man performancewvhich could only be fit by the model
with the help of anadditionalassumptionThis assump-
tion wasthatthe systemwould covertly rehearseecently
retrieved traces. He addedto the memorymodel a re-
hearsalbuffer which containedthe 4 mostrecentlyre-
trieved memorytraces. On eachtime step, eachtrace
in the rehearsabuffer hada 0.2 probability of beingre-
hearsedn thattime step.Rehearsasimply involvedthe
retrieval of thattracefrom memory Increasinghe num-
ber of retrievals of a tracethroughrehearsatvould ex-
pandits retrieval history, Ha, andwould therebyincrease
the history factor P(A|Ha), for that trace. Anderson
addedthis rehearsaktratgy, admitting that it stepped
beyondthe boundsof an optimality analysis.Still, such
anaugmentednalysisvasconsideredvorthwhile,since
it could shav that humanperformances optimal up to
the inclusion of suchrehearsaktratgies. Indeed,that
was exactly what Andersondemonstratedor a number
of memoryphenomena.

Following Andersonslead,theoptimalinstructedcat-
egory learningsimulationwasaugmentedvith a 4 ele-
mentrehearsabuffer. As in Andersonswork, the prob-
ability of rehearsafor eachitem in the buffer was set
to 0.2 per time step. The memory trace for the in-
structedrule was allowed to occupy the buffer and be
rehearsedust like any othermemorytrace. The associ-
ationalstrengthparametewaskeptat 0.65.

Addingthisrehearsamechanisnihada substantiaim-
pacton the behaior of the optimal memory as shovn
in Figure2. With rehearsalthe explicit rule maintained
its perceved utility throughmuchof thetraining phase,
but wasovercomeby exemplarsimilarity by thetime the
testingitemswere presented.This producedconsistent
errorson thosestimuli whose"partners”werein the op-
posite categgory. Whentraceswere retrieved stochasti-
cally, in proportionto their needprobabilities, the fre-
queng of error on suchitemswas42%, comparingfa-
vorably to the 45% error exhibited by humanlearners.
Thus,therationalmemorymodel,whenaugmentedvith
rehearsalappeargo be consistentvith the obsenedin-
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Figure2: Resultfrom the OptimalMemoryModel With
RehearsalOnceagain,the needprobability of the rule
memorytraceis plottedagainsthemaximumneedprob-
ability amongthetracesfor thetrainingsetitems.

terferenceeffectin instructedcategory learning.

Discussion

In mary situations, it is more useful to remembera
highly similar episodefrom the pastthanto recallgener
ally applicableinstructions.Therationalmemorymodel
of AndersonandMilson (1989)is aformalizationof the
proces®f optimally predictingwhensuchasituationhas
arisen. The unaugmentedptimal memorymodelspec-
ifies that, within the experimentaldesignof Allen and
Brooks(1991),theexplicit rule shouldalmostalwaysbe
preferredif similarity is not very predictive (i.e., when
theassociationastrengthis low), anda memaoryfor spe-
cific instanceshouldalmostalwaysbe preferredf sim-
ilarity is sufficiently predictive (i.e., whenthe associa-
tionalstrengthis high). Thisis notconsistentvith human
performancehowever, whereerrorson “tricky” testing
setitemsappeareanly 45% of thetime.

However, if therationalmemorymodelis augmented
with arehearsaimechanismasis neededo explain per
formanceon othermemorytasks(Anderson,1990),the
resulting needprobabilitiesmatch humanperformance
much more accurately This suggestshat the interfer
enceeffect of interestmay arisein the interactionbe-
tween an optimal memory mechanismand a rehearsal
stratgyy. Onepredictionof this calculationis thatexperi-
mentalmanipulationsvhich hinderrehearsaWwill reduce
exemplarbasednterference.

Note that, in thesesimulations,the memorytracefor
theexplicit rule sharecho featureswith the stimuluspre-
sentationcontexts. This wasintendedto modelthe fact
thatthestimuli werepictorial, while therule waslinguis-
tic. In fact, if the featuresitemizedin the explicit rule

are associatedvith the correspondingtimulusfeatures
with the sameassociationaktrengthas usedelsavhere
in thesesimulations(0.65), the explicit rule comesto

dominateover exemplarmemorytracesgvenin theaug-
mentedmodel. It is a surprisingfactis that this prop-

erty of the model actually reflectshumanresponding.
Exemplarbasednterferencevirtually disappearewhen
Allen andBrooks(1991)presentedheanimalstimuli not

aspicturesbut asword lists— allowing thestimulusfea-

turesandthe explicit rule termsto literally match.

In summarywhile thisanalysisdoesnotrule outother
potentialexplanationsof exemplarbasednterferenceit
offersthetantalizingpossibilitythatthe humantendeng
toignoreexplicit instructiondn favor of informationpro-
vided by exampleexperiencesnay be essentiallyadap-
tive whenconsideredwithin the context of the common
demandgplacedon thecognitive systemgesponsibldor
learningandmemaory
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