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Abstract

We present the first developmental computational model of
metaphor comprehension, which seeks to relate the
emergence of a distinction between literal and non-literal
similarity in young children to the development of semantic
representations. The model gradually learns to distinguish
literal from metaphorical semantic juxtapositions as it
acquires more knowledge about the vehicle domain. In
accordance with Keil (1986), the separation of literal from
metaphorical comparisons is found to depend on the maturity
of the vehicle concept stored within the network. The model
generates a number of explicit novel predictions.

Introduction
Despite the highly imaginative and figurative way in which
children often describe the world, somewhat surprisingly it
has been claimed that children are unable to understand
figurative or metaphorical speech until they are quite old
(Piaget, 1962; see Gibbs, 1994, for a complete review of this
position).  A likely explanation of this disparity is that adult
usage of figurative devices such as metaphor involves
several skills. For metaphor, these may include the
perception of similarity and of anomaly in comprehending
metaphors, the invention of similarities in generating
metaphors, an understanding of the role of context in
constraining possible meanings, an understanding of speaker
intentions, and a metalinguistic ability to justify metaphor
use based on specific cross-domain similarities (see e.g.,
Dowker, 1999). Moreover, it is possible that these skills
have different developmental trajectories. Thus Dowker
(1999) argues that age variations in similarity recognition
and invention may be due to limited domain knowledge
which serve to restrict the types of similarity employed by
young children to mainly perceptual information. On the
other hand, the temporary reduction found in the prevalence
of metaphor in the language of children around the age of 6
to 7 (Gardner, Winner, Becchoffer, & Wolf, 1978; Winner,

1988) may be due to age variations in recognition of
anomaly.

The idea that conceptual knowledge constrains the ability
to use language figuratively is supported by evidence that
metaphor usage in children is more prevalent in domains
with which they are more familiar (Gottfried, 1997). Indeed
Keil (1986) argued that metaphor usage closely shadows the
development of conceptual categories. Similar arguments
have been made in the related field of analogical reasoning,
where it was also initially maintained that the relevant skills
appear late in childhood (Piaget, 1962). However, when
analogical reasoning was tested in more familiar domains,
skills were found at a much earlier age. This implies that
limitations in analogical reasoning arise from differences in
the knowledge available to children as a basis for exercising
this skill (Goswami, in press).

How, then, are we to interpret the apparent presence of
metaphor in young children, for example, when a child aged
3 years and 5 months refers to a green carpet as ‘grass’
(Billow, 1981)? Putting aside the possibility of renaming in
symbolic play (which need not involve any similarity
between label and assigned referent), and the possibility that
this is a case of over-extension (which can be ruled out by
checking that the child knows the actual name for a carpet;
see Gardner et al., 1978), the juxtaposition would qualify as
metaphoric only under the following conditions: the child
had not only spotted the similarity between the carpet and
grass, but was also aware that carpet and grass fall into
separate categories, so that the similarity between them was
understood to be non-literal. Several authors have suggested
that fuzziness in categorization could explain children’s
early use of apparently figurative language (Hakes, 1982;
Marschark & Nall, 1985). If a child’s conceptual knowledge
has not formed into neat clusters, then there will be some
overlap between categories. A sentence that appears
figurative to adults may be interpreted as literal by the child.

Evidence to support this position can be found in a study
by Vosniadou and Ortony (1983). In their investigations of



the emergence of the distinction between literal,
metaphorical, and anomalous comparisons, these authors
found evidence that, although 3-year-olds could produce
metaphorical completions to target sentences, they were
unable to reliably identify that the concepts juxtaposed in
these sentences fell into separate categories. However, by
four years of age, children who produced metaphors also
showed an understanding that metaphorical statements
involved concepts from different conventional categories.
Both the 3- and 4-year-olds were able to identify anomalous
from literal and metaphorical comparisons (see also
Pearson, 1990). Vosniadou and Ortony interpreted these
data as suggesting that children start with an
undifferentiated notion of similarity, which at about the age
of four becomes differentiated into literal and non-literal
similarity. They suggested that the latter type forms the
basis of metaphorical language comprehension.

In this paper, we describe the first computational model
explaining the emergence of the distinction between literal
and metaphorical similarity, based on an existing
connectionist model of simple metaphor comprehension
(Thomas & Mareschal, 2001). The importance of this model
is that it directly relates the development of metaphor
comprehension to the development of semantic
representations. The structure of this paper is as follows. We
begin by briefly reviewing connectionist approaches to
metaphor comprehension. Second, we describe the main
tenets of the Metaphor by Pattern Completion (MPC) model
on which the developmental account is based. Third, we
chart the development of category-specific representations
that support metaphor comprehension and the distinction
between literal and figurative statements within the MPC
model. Finally, we discuss implications for the order of
acquisition of such distinctions by young children.

Connectionist models of metaphor processing
First of all, it is important to point out that, although
previous computational models have been proposed for the
comprehension of metaphor, all of these models have
related to the adult state, and none have contained a
developmental component.

Previous models of metaphor comprehension have
exploited the soft multiple constraint satisfaction abilities of
connectionist networks to capture the interactions of
conceptual domains when they are juxtaposed in
comparisons. One class of models has focused on the
potential of microfeature or vector representations of
concepts to capture subtle interactions between knowledge
bases (e.g., Chandler, 1991; Sun, 1995; Thomas &
Mareschal, 2001). A second class of models has focused on
structural mapping accounts of analogy formation, whereby
target and vehicle domains are compared via the alignment
of their relational structure, as well as evaluation of shared
attributes (e.g., Holyoak & Thagard, 1989; Hummel &
Holyoak, 1997). Why have computational models of
metaphor comprehension been silent on developmental

phenomena? The answer is that both classes of model have
tended to include extensively pre-structured, domain-
specific representations, which prevent them from exploring
how representations (and their comparison) may emerge as
a function of development.

In the present work, we will focus only on attribute
mapping, which is readily captured by microfeature models,
and put to one side problems of structural alignment.
Although this limits the scope of the metaphors to which the
model can be applied, it nevertheless makes the first initial
steps towards exploring the developmental dimension of
metaphor processing, and specifically, to investigating the
ways in which metaphor comprehension can be linked to the
development of semantic representations.

The MPC model
A full description of the MPC model can be found in
Thomas and Mareschal (2001), along with an evaluation of
its main assumptions. Here we provide a brief outline. In
broad terms, the model suggests that, when presented with a
metaphor such as Richard is a lion, the listener indeed
attempts to fit the concept Richard into the category of lion;
in so doing, an outcome of the categorization process is to
alter the representation of Richard to make him more
consistent with the features of a lion.

More specifically, metaphor comprehension is construed
as a two-stage process. Consistent with Glucksberg and
Keysar’s (1990) view of metaphor comprehension as a  type
of categorization process, the first stage comprises mis-
classification of a semantic input. A metaphor <A is B>,
where A is the topic and B the vehicle, is comprehended by
applying a representation of the first term (A) to a semantic
memory network storing knowledge about the second term
(B). Categorization is evaluated via the accuracy of
reproduction of (A)’s representation in an autoassociator
network trained on exemplars of (B). The degree of
semantic distortion of (A) is a measure of the semantic
similarity of concept A to domain B (Thomas & Mareschal,
2001).

However, the result of applying (A) to the network storing
knowledge about (B) is a representation of (A) transformed
to make it more consistent with the (B) knowledge base. In
particular, there is an interaction in which features of (A)
key into covariant structure between features in (B). If (A)
shares some features of such covariant structures, it inherits
further features by a process of pattern completion. Such
feature inheritance depends on both terms, and provides an
implementation of Black’s (1979) well-known interaction
theory of metaphor comprehension. However, enhancement
of the features of (A) does not complete the process. In a
second stage, the degree of meaning change of the topic is
compared to the expected level of change given the current
discourse context (Vosniadou, 1989). If the threshold is
high, the statement is taken as literal and the full change in
meaning is accepted. If it is at an intermediate level, only
enhanced feature changes are accepted as the



communicative intent of a metaphor. If the threshold is at a
low level, the sentence is rejected as anomalous.

Thomas & Mareschal (2001) evaluated the model’s
performance in comparing highly simplified domains to
illustrate this process. Plausible metaphorical comparisons
such as “the apple is a ball” were contrasted with anomalous
comparisons such as “the apple is a fork”. The model was
able to account for a number of empirical phenomena,
including the non-reversibility of comparisons and the
predictability of interactions between topic and vehicle.

However, the degree to which metaphorical semantic
transformations will occur depends not only on the
similarity of (A) and (B), but also on the amount and quality
of the knowledge stored in knowledge base B. In this way,
metaphor comprehension can be linked to semantic
development.

In the next section, we take a single vehicle knowledge
domain and trace the development of metaphorical
comprehension as the knowledge in the base network
increases with learning. For simplicity, the sample
knowledge base comprises information about types of ball,
and performance is compared on literal comparisons (“the
football is a ball”) against metaphorical comparisons (“the
pumpkin is a ball”) and anomalous comparisons (“the kite is
a ball”).

The developmental model is intended to be illustrative:
we make no claims about children’s specific abilities to
compare objects to balls at specific ages. Rather, we are
interested in evaluating the effect of emerging semantic
structure on the delineation of different types of similarity,
and the consequent qualitative changes in the nature of
metaphor comprehension during development.

Modeling the development of metaphor
comprehension

Autoassociation is at the heart of the MPC mechanism. In
the original model (Thomas & Mareschal, 2001), multiple
parallel knowledge bases were available for different
comparisons. However, in the present article and in the
interest of clarity, we discuss only results obtained with a
single autoassociator network.

A network with 16 input units, 16 output units, and 10
hidden units was trained to autoassociate a set of input
patterns that defined the semantic knowledge of the vehicle
domain. The number of hidden units was chosen to allow
good training performance but also to encourage
generalization. All units in the network used sigmoid
activation functions.

The autoassociation network was trained for 500
presentations of the complete training set. At each epoch the
training set was presented in a different random order. The
learning rate and momentum were set to 0.05 and 0.0
respectively. Metaphor comprehension performance was
evaluated at 0, 1, 2, 3, 4, 5, 7, 10, 15, 20, 30, 45, 70, 110,
200, and 500 epochs of training. The results reflect an

average over n=12 replications with different initial random
seeds.

The training set was constructed around 8 prototypes of
various balls, constituting the ‘ball’ knowledge base.
Prototypes were defined over 5 clusters of features: color
(red, green brown, white), shape (round, irregular),
consistency (soft, hard), size (small, large), weight (heavy,
light), and associated action (thrown, kicked, hit, eaten), for
a total of 16 semantic features. The last feature was included
to permit anomalous and metaphorical comparisons. We
assume that all concepts can be described by the same large
feature set, and that the organization of knowledge into
different categories happens within the hidden unit
representations through learning. Feature values ranged
between 0 and 1, so that the higher the activation, the more
prominent the feature. Opposite feature values (e.g., small &
large) were encoded on separate inputs to allow the coding
of an absence of knowledge. From each prototype, 10
exemplars were generated by adding Gaussian noise (with
standard deviation of 0.35) to the prototype pattern. The
final training set thus constituted 8x10 = 80 exemplars of
balls. The training prototypes are listed in Table 1, upper
section.

Assessing different semantic comparisons
A comparison is evaluated by applying a novel input to the
network and seeing how well it is reproduced on the output
units. The more accurate the reproduction, the greater the
similarity of the novel item to the knowledge stored within
the network. Nine novel comparisons were created using the
semantic features described above. These fell into three
classes: (1) literal comparisons, (2) metaphorical
comparisons, and (3) anomalous comparisons.

Literal comparisons involved novel exemplars of balls
near the prototypical values. Metaphorical comparisons
involved inputs that shared some properties with balls, but
differed on other properties. Anomalous comparisons
involved inputs constructed so that the inputs shared few
features with balls in general.

The input vectors for the different classes of comparisons
were constructed by comparing the novel input with the ball
prototype vectors used to generate the knowledge training
set. This was achieved by computing the angle between the
two vectors in semantic space and selecting the closest
match. For the literal comparisons, the angle had to be to be
less than 10 degrees, for the metaphorical comparisons, it
had to be between 40 and 45 degrees, and for the anomalous
comparisons, it had to be between 60 and 66 degrees. (An
angle of 90 degrees would constitute a novel pattern
orthogonal to, or completely different from, all the
prototypes used to generate the exemplars in the knowledge
base.) Novel comparisons are shown in Table 1, lower
section. A perfect reproduction of the input at the output
indicates a similarity of 1.0 (self-similarity). The
transformation similarity (S) of each novel comparison to
the ball knowledge base was defined as:



S = 1 - RMS Error (1)

An RMS error of 0 would give a similarity of S=1. High
similarity implies low semantic distortion (as expected in a
literal comparison), moderate similarity implies moderate
semantic distortion (as expected in a metaphorical
comparison), and low similarity implies high semantic
distortion (as expected in an anomalous comparison). The
similarity of novel comparisons was evaluated at different
points during training. Principal Component Analyses of the
hidden unit activations were also carried out during training
to chart the development of the internal representations.

Results
Figure 1 shows S for each of the three types of comparison
as learning progresses. Initially, there is little difference
between literal, metaphorical and anomalous comparisons.
However, even very early in learning a marked separation of
the anomalous comparisons from the literal and
metaphorical comparisons appears. The metaphorical and
literal comparisons continue to be treated in a similar
fashion for a further 5 presentations of the training set. At
this point, metaphorical and literal similarities diverge. In
the remaining epochs of training, the similarities from the
three different types of comparisons separate into distinct
bands. After an initial period of treating literal and
metaphorical statements identically, the network has learnt
to separate them out.

The process that underlies the development of this
distinction can be better understood by examining the
developing structure of the network knowledge base (Fig.2).
Principal Components Analysis of the hidden unit activation

space shows how the internal representations pull apart the
different types of ball during training, according to their
input characteristics.

In general, anomalous patterns fall in-between clusters,
while metaphorical comparisons lie at the edge of clusters,
and literal comparisons lie within the clusters. Once the
clusters are sufficiently delineated from each other, an item
that bears a metaphorical relation to a given category is
distinguished from members of that category.

Novel inputs to the network are transformed in an attempt
to classify them. Within the model, the transformed
semantic representation corresponds to the meaning
enhancement that is the outcome the comparison. Focusing
on the metaphorical comparisons alone, examination of this
enhancement yields three distinct phases during training.
First, there is poor pattern completion, linked to an
immature vehicle knowledge base. Next, with the initial
emergence of semantic structure, metaphorical comparisons
such as “the pumpkin is a ball” and “the apple is a ball” lead
to enhancement of some of the target’s features. For
example, ‘pumpkins’ and ‘apples’ are not associated with
being ‘thrown’, ‘hit’, or ‘kicked’. The effect of each
metaphor is to transfer such features from vehicle to topic.
However, initially enhancement occurs according to an
early, prototypical notion of ball, a notion that averages over
all exemplars of balls, and corresponds to what one might
call the basic level of the category. On average, most balls
are ‘hit’ rather than ‘kicked’ or ‘thrown’. During this second
phase, the ‘hit’ enhancement is inherited by all round, firm
targets such as ‘apple’ and ‘pumpkin’. However, in the third
phase, as further training produces delineation of the
knowledge base, transfer now occurs according to the type
of ball most similar to the particular target, according to

Table 1: Upper section: Prototypical patterns forming the ball knowledge base. Adding noise to the prototypes
creates training sets. Lower section: Novel patterns used in literal, metaphorical, and anomalous comparisons.
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Football(white) .00 .00 .00 .90 .00 .20 .00 .95 .90 .00 .00 .80 .00 .90 .90 .00
Football(brown) .00 .00 .90 .00 .00 .20 .00 .95 .90 .00 .00 .80 .00 .90 .90 .00
Cricket ball .90 .00 .00 .00 .00 .98 .97 .00 .90 .00 .00 .98 .80 .00 .80 .00
Ping-Pong ball .00 .00 .00 .95 .00 .10 .98 .00 .98 .00 .00 .98 .95 .00 .00 .95
Tennis ball .00 90 .00 .00 .00 .80 .98 .00 .90 .00 .80 .00 .80 .00 .00 .85
Squash ball (red) .80 .00 .00 .00 .00 .50 .98 .00 .93 .00 .85 .00 .95 .00 .00 .90
Squash ball (green) .00 .90 .00 .00 .00 .50 .98 .00 .93 .00 .85 .00 .95 .00 .00 .90
Beach ball .98 .00 .00 .00 .00 .90 .90 .90 .90 .00 .98 .00 .00 .98 .00 .90

Novel comparisons

Literal:
   Football (white) .00 .00 .00 .85 .00 .20 .00 .98 .80 .00 .10 .80 .00 .90 .80 .00
   Beach ball .90 .00 .00 .00 .00 .80 .70 .90 .70 .00 .90 .00 .00 1.0 .00 .80
   Ping-Pong ball .00 .00 .00 .99 .00 .20 .99 .00 .95 .00 .00 .90 .95 .00 .00 .97
Metaphorical:
   Apple (red) .80 .00 .00 .00 .95 .05 .00 .00 .75 .15 .70 .20 .70 .00 .00 .50
   Pumpkin .20 .00 .70 .00 .80 .00 .00 .00 .80 .50 .80 .60 .00 .80 .90 .00
   Apple (green) .00 .95 .00 .00 .95 .05 .00 .00 .75 .15 .70 .20 .70 .00 .00 .50
Anomalous:
   Kite .99 .00 .00 .00 .00 .05 .00 .00 .00 .99 .00 .98 .00 .95 .20 .80
   Spaghetti .00 .00 .80 .20 .97 .00 .00 .00 .00 .70 .80 .20 .00 .70 .00 .60
   Toast .00 .00 .80 .10 .80 .00 .00 .00 .00 .80 .80 .00 .80 .00 .00 .90



what one might call the subordinate level of the vehicle
category. Table 2 shows that at 4 epochs ‘apple’ and
‘pumpkin’ have similar activation levels for the action
features, loading maximally on ‘hit’, whereas at 500 epochs,
‘apple’ and ‘pumpkin’ now load on different features.
Apples are now viewed as likely to be hit, and pumpkins to
be kicked, according to their differing sizes. The model thus
generates an explicit and testable prediction: attribute
inheritance will move from basic to subordinate level during
development.

Moreover, since there is variability within the internal
structure of categories, not all literal comparisons will be
equivalent. The more atypical the literal comparison, the
more it will resemble a metaphor. This leads to a second
explicit and testable prediction: the recognition of atypical
literal statements as distinct from metaphorical statements
should lag behind the recognition of typical literal
statements as distinct from metaphorical statements during
development.

Discussion
A common characterization of conceptual development
views young children’s knowledge as being assimilated into
broad groups; as children develop, they make finer and finer
distinctions until there are many different categories (e.g.,
Carey, 1985; Keil, 1986). Because the comprehension of
metaphor requires the deliberate deconstruction of
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Figure 1. Similarity (S) of novel comparisons to the
ball knowledge base during training. Three examples
from each comparison type are plotted.

Table 2: Attribute transfer from basic (4 epochs) and
subordinate (500 epochs) category levels. Scores show
the transformed feature values for action features
Thrown (T), Hit (H) and Kicked (K) in the topic.

Comparison <X is a Ball>
Red Apple Pumpkin

T H K T H K
4 epochs .59 .75 .37 .50 .60 .30
500 epochs .17 .85 .17 .18 .03 .48
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categories, the way knowledge is categorized will have a
large effect on metaphor comprehension. The model we
have described above provides a concrete implementation of
Marschark and Nall’s (1985) account of metaphor use in
young children. Literal, metaphorical, and anomalous
comparisons fall onto a conceptual space undergoing
refinement. The process of refinement leads to the
emergence of a notion of non-literal similarity.

Clearly this simple model does not capture all aspects of
the development of metaphor comprehension. The
metaphors we have dealt with are predominantly perceptual.
Importantly, the model fails to capture the emerging use of
structural information in children’s metaphors (Gentner,
1988). However, existing computational models have not
addressed develop-mental phenomena at all, let alone the
relational shift. The next step for the MPC model will be an
extension to structured representations, possibly via the
inclusion of synchrony binding (see Hummel & Holyoak,
1997), while retaining the mechanism of pattern completion
as a powerful tool for explaining the transfer of attributes in
metaphorical comparisons. Despite its simplicity, the
importance of the current model is its demonstration that the
emergence of non-literal similarity can be driven by
emerging semantic structure, and the explicit testable
hypotheses it generates to progress our understanding of the
development of metaphor comprehension in young children.
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