
ar
X

iv
:1

81
2.

03
60

1v
1

 [
m

at
h.

C
T

]
 1

0
D

ec
 2

01
8

A recipe for black box functors

BRENDAN FONG AND MARU SARAZOLA

Abstract

The task of constructing compositional semantics for network-style
diagrammatic languages, such as electrical circuits or chemical reac-
tion networks, has been dubbed the black boxing problem, as it gives
semantics that describes the properties of each network that can be ob-
served externally, by composition, while discarding the internal struc-
ture. One way to solve these problems is to formalise the diagrams
and their semantics using hypergraph categories, with semantic inter-
pretation a hypergraph functor, called the black box functor, between
them. Reviewing a principled method for constructing hypergraph cat-
egories and functors, known as decorated corelations, in this paper we
construct a category of decorating data, and show that the decorated
corelations method is itself functorial, with a universal property char-
acterised by a left Kan extension. We then argue that the category
of decorating data is a good setting in which to construct any hyper-
graph functor, giving a new construction of Baez and Pollard’s black
box functor for reaction networks as an example.

1 Introduction

From chemical reaction networks to tensor networks to finite state automata,
network diagrams are often used to represent and reason about intercon-
nected systems. What makes such a language convenient, however, is not
just that these diagrams are intuitive to read and work with: it’s that the
notion of networking itself has meaning in the relevant semantics of the
diagrams—the chemical or computational systems themselves.

More formally, recent work has used monoidal categories, and in partic-
ular hypergraph categories, to describe the algebraic structure of such sys-
tems, including electrical circuits, signal flow graphs, Markov processes, and
automata, among many others [BF18, BSZ17, ASW11, BFP16, GKS17].
In this approach, diagrams are formalised as morphisms in a hypergraph
category which represents the syntax of the language, and they are inter-
preted in another hypergraph category which models the semantics of the
language. What matters then, is that this process of interpretation preserves
the network operations: that this map forms what is known as a hypergraph
functor.

1

http://arxiv.org/abs/1812.03601v1

In these hypergraph categories, the objects model interface or boundary
types, and semantic interpretation often has the effect of hiding internal
structure, and reducing the combinatorial, network-style diagram descrip-
tion of a system to the data that can be obtained via interaction, or compo-
sition, with other systems. In other words, semantic interpretation has the
effect of wrapping the network, say an electrical circuit, in a ‘black box’. We
hence, informally, call a hypergraph functor that describes the semantics of
a system a black box functor. This paper describes a general method for
constructing such functors.

Let’s consider an example. In their paper “A compositional framework
for reaction networks” [BP17], Baez and Pollard define a black box functor
for reaction networks. Reaction networks, also known as stochastic Petri
nets, were developed to describe systems of chemical reactions and their
dynamics. Here is an example of a reaction network:

α C β

A

B

D

Here A, B, C, and D represent chemical species, such as carbon dioxide or
water, and α and β represent chemical reactions; for example α represents
the reaction A+B −→ 2C.

To consider the depicted network as an open reaction network, and as a
morphism in a category, we annotate this data with left and right bound-
aries, which one might consider as inputs and outputs. For example, in the
following

α C β

A

B

D

If the right boundary of one open network coincides with the left bound-
ary of another, we may compose them by identifying all chemical species
that share the same boundary annotation. Although we could represent
these reaction networks directly as some form of labelled graph, and indeed
Baez and Pollard do so, the core of the problem of describing black box se-
mantics is better illustrated if we jump straight to representing the system
as a vector field on the space of concentrations of the chemical species in the
network. As we shall see, this idea turns reaction networks into the mor-
phisms of a hypergraph category known as Dynam. In particular, an object

2

in Dynam is a finite set X, and a morphism X → Y in Dynam is a cospan
of finite sets X → N ← Y together with a suitably well-behaved vector
field on N . Here we think of each finite set as a set of chemical species,
the cospan as marking the species in N that can be externally controlled as
inputs and outputs, and the vector field as describing the dynamics of the
chemical system.

Reaction networks give rise to a system of coupled differential equations,
whose solutions in turn represent the ways in which the concentrations of
the chemical species in the system can vary over time. Baez and Pollard de-
scribe, in particular, the steady state semantics: the concentrations of species
that are stable with respect to supplying an inflow or outflow of chemicals
at the boundary at a certain rate. Each steady state is described by a tuple
(ci, fi, co, fo), whose entries represent, respectively, the concentrations at the
left boundary, or input, the inflow, the concentrations at the right boundary,
and the outflow. Thus the set of all steady states forms a binary relation
between an input and an output space of concentrations and flows. Writing
Rel for the category of sets of binary relations, Baez and Pollard show that
this defines a strong symmetric monoidal functor � : Dynam→ Rel.

In this paper we will provide a general recipe for constructing such func-
tors. In doing so, we will provide a streamlined proof of the functoriality of
this functor �, and in fact show, moreover, that we can understand it as a
hypergraph functor.

Baez and Pollard use what is known as a decorated cospans construc-
tion to define the domain of their functor, Dynam. The main theme of this
paper is a careful study of a generalisation of this construction, introduced
in [Fon18], known as decorated corelations. Decorated cospans constructs a
hypergraph category from a finitely cocomplete category C and a lax sym-
metric monoidal functor F : (C,+)→ (Set,×). In the above example Dynam,
the finitely cocomplete category is the category FinSet of finite sets, and F

is the functor that maps a finite set N to the set of suitably well-behaved
vector fields on R

N . Decorated corelations generalises this by also requiring
a factorisation system (E ,M) on C, and extending F to a functor on a cer-
tain subcategory C#Mop of Cospan(C). As we shall see, this method suffices
to construct, up to equivalence, all hypergraph categories and hypergraph
functors. Moreover, it can be used to represent the data of a hypergraph
category in an efficient way that makes the data easy to work with.

Our first main result is the functoriality of this construction. Indeed,
we define a category DecData whose objects are decorating data: the tuples
(C, (E ,M), F) required for the decorated corelations construction. Write
Hyp for the category whose objects are hypergraph categories and morphisms
are hypergraph functors.

Theorem. The decorated corelations construction defines a functor

(−)Corel : DecData→ Hyp .

3

We will prove this theorem by a characterisation, interesting in its own
right, of the decorated corelations functor (−)Corel in terms of left Kan
extension. To do this, we make use of a full subcategory of DecData that we
call CospanAlg, whose objects are finitely cocomplete categories C together
with a lax symmetric monoidal functor Cospan(C)→ Set.

Theorem. The functor (−)Corel factors as the composite Φ ◦ Kan, where
these functors are part of adjunctions

Hyp ⊥ CospanAlg ⊤ DecData .
Alg

Φ

ι

Kan

As a corollary of these investigations, we shall see that decorated core-
lations allow us to build, up to equivalence, any hypergraph category and
any hypergraph functor.

Moreover, we shall see that this understanding allows a new proof of
the functoriality of Baez and Pollard’s black box functor. The key idea is
that Baez and Pollard start with an object D in DecData, and use (−)Corel
to turn it into a hypergraph category Dynam in Hyp. Then, after defining
the hypergraph category of semialgebraic relations SARel, they directly con-
struct the hypergraph functor �. On the other hand, we show that using
the functor Alg and inclusion of categories ι, we can reduce SARel to an
object S in DecData and construct a morphism in DecData from D to S.
In short, we work on the right of the above diagram, instead of on the left.
The properties of DecData ensure that this category is easier to work with,
and the functor (−)Corel lifts this morphism in DecData to the desired black
box functor. We hope that the simplicity of our proof provides a recipe for
further work on constructing black box functors.

Outline The layout of this paper is as follows. Section 2 contains the
necessary background, recalling the definitions of the category of cospans
Cospan(C), of Frobenius monoids, and of hypergraph categories, along with
some key examples that will be of use later in the paper.

Section 3 deals with decorating data. After presenting the types of dec-
orating data available in the literature, decorated cospans and corelations,
we introduce a new category DecData of decorating data which consists of
all the relevant information one needs for decorating purposes. At the end
of the section we state our first main theorem (Theorem 3.21): decorating
corelations extends to a functor (−)Corel : DecData → Hyp. The proof is
deferred to Section 5.2.

In Section 4, we consider the full subcategory CospanAlg ⊆ DecData. We
show that this embedding admits a left adjoint, which we call Kan since it
entails of taking left Kan extensions of the functors involved. The latter part
of this section is mainly technical, and provides an explicit description of the
functor Kan that proves useful for comparing it to previous constructions.

4

Section 5 considers the restriction of (−)Corel to the category CospanAlg,
which we show to be functorial. Section 5.2 contains our main result, Thm.
5.2, which states that the functor (−)Corel : DecData→ Hyp factors as

DecData
Kan
−−→ CospanAlg

Φ
−→ Hyp .

In particular, this implies Thm. 3.21.
Section 6 shows that the functor Φ admits a left adjoint Alg : Hyp →

CospanAlg. Furthermore, the unit of this adjunction is a component-wise
equivalence of hypergraph categories, which proves that every hypergraph
category can be built from DecData via the decorated corelations construc-
tion. Thus, our category DecData contains all the necessary information
for dealing with hypergraph categories. In the case that our hypergraph
categories are objectwise free, we show our construction in fact recovers the
hypergraph categories up to isomorphism.

Finally, Section 7 gives an application of our results. We briefly recall the
main aspects of open dynamical systems, and of the black-boxing functor
� : Dynam→ SARel constructed in [BP17]. We then show how this functor
can be obtained in a simple and natural way through our results.

Acknowledgements We thank David Spivak and John Baez for useful
conversations. BF was supported by USA AFOSR grants FA9550-14-1-0031
and FA9550-17-1-0058. MS was supported by Cornell University’s Torng
Prize Fellowship.

2 Background

We quickly review the notions of cospan category, Frobenius monoid, and
hypergraph category. A fuller introduction can be found in [Fon16, FS18].
Throughout this paper, we will assume all categories are essentially small.

2.1 Cospan categories

As observed by Benabou [Ben67], for any finitely cocomplete category C, we
can define a symmetric monoidal category Cospan(C) whose objects are the
same objects as in C, and where a map X → Y is given by an isomorphism

class of cospans X
i
−→ N

o
←− Y . Recall that two cospans X

i
−→ N

o
←− Y

and X
i′
−→ N ′ o′

←− Y sharing the same feet are isomorphic if there exists an

isomorphism between the apexes N
f
−→ N ′ such that f ◦ i = i′ and f ◦o = o′.

Cospans X
i
−→ N

o
←− Y and Y

i′
−→M

o′
←− Z compose by using the pushout

5

along the common foot X
jN i
−−→ P

jMo′

←−−− Z:

P

N M

X Y Z.

jN jM

i o i′ o′

Since C has finite colimits, it can be given a symmetric monoidal struc-
ture with the coproduct and initial object playing the role of the tensor
product and unit. Thus Cospan(C) inherits this monoidal structure via the
embedding C →֒ Cospan(C), an identity-on-objects functor taking a map

f : X → Y in C to the cospan X Y Y
f

, where we use the long
equals sign to denote the identity map. We will sometimes abuse nota-
tion and refer to this cospan simply as f , and to its “opposite” cospan

Y Y X
f

as fop.

2.2 Frobenius monoids

Definition 2.1. A special commutative Frobenius monoid in a symmetric
monoidal category C is an object X together with maps

µ : X ⊗X → X η : I → X δ : X → X ⊗X ǫ : X → I

such that (X,µ, η) is a commutative monoid, i.e.

= = =

(X, δ, ǫ) is a cocommutative comonoid, i.e.

= = =

and the Frobenius and special axioms are satisfied:

= = =

Example 2.2. Every object X in Cospan(C) can be given a canonical special
commutative Frobenius structure. The monoid structure is inherited from
its canonical monoid structure in (C,+, ∅)—that is, η := ! : ∅ → X and
µ := [1X , 1X] : X +X → X—through the embedding C →֒ Cospan(C). The
comonoid structure is given by the opposite cospans; explicitly, the counit
and coproduct maps are respectively

X X ∅
η

and X X X +X.
µ

6

2.3 Hypergraph categories

We can consider monoidal categories in which every object has a Frobenius
structure; these are due to Carboni and Walters [Car91]. Write σ for the
braiding in a symmetric monoidal category.

Definition 2.3. A hypergraph category is a symmetric monoidal category
(H,⊗, I) whose every object X is equipped with a Frobenius structure
(µX , ηX , δX , ǫX) in a manner that is compatible with the monoidal structure
in H; that is, such that the Frobenius structure on X ⊗ Y is
(

(µX ⊗ µY) ◦ (1⊗ σ ⊗ 1), ηX ⊗ ηY , (1⊗ σ ⊗ 1) ◦ (δX ⊗ δY), ǫX ⊗ ǫY

)

,

and such that the Frobenius structure on I is (ρ−1
I , idI , ρI , idI), where ρ

denotes the unitor in (H,⊗, I).
A hypergraph functor is a strong symmetric monoidal functor between

hypergraph categories that preserves the Frobenius structures present—that
is, such that if the Frobenius structure on X is (µX , ηX , δX , ǫX), then that
on FX must be

(

FµX ◦ ϕX,X , FηX ◦ ϕI , ϕ−1
X,X ◦ FδX , ϕ−1

I ◦ FǫX

)

.

Example 2.4. As we saw in Example 2.2, every object in Cospan(C) can
be given a Frobenius structure, and one can further prove that these are
compatible in the required sense, making Cospan(C) into our prototypical
example of hypergraph category.

Example 2.5. Consider the symmetric monoidal category LinRel, whose ob-
jects are finite dimensional R-vector spaces with a chosen basis (or in other
words, Rn,) and where maps R

m → R
n are linear relations; that is, linear

subspaces of Rm⊕R
n. The symmetric monoidal structure is given by direct

sum.
Note that every each object R

n of LinRel is a monoidal product of n

copies of R. Thus, to equip LinRel with a hypergraph structure, it suffices to
give the object R a Frobenius structure. In fact, we can equip (LinRel,⊕, 0)
with two different hypergraph category structures. Let’s see how these are
constructed.

Since the multiplication and comultiplication are maps µ : R ⊗ R → R

and δ : R→ R⊕R, they will be defined by subspaces of R⊕R⊕R; similarly,
the unit and counit will correspond to subspaces of R.

The first structure we consider has both µ and δ given by the subspace

{(v, v, v)} ⊆ R⊕ R⊕ R

and unit and counit given by the subspace R ⊆ R. The second structure
has multiplication defined as the subspace

{(u, v, w) | u+ v = w} ⊆ R⊕ R⊕ R,

7

comultiplication given by

{(u, v, w) | u = v + w} ⊆ R⊕ R⊕ R

and unit and counit 0 ⊆ R. It’s not hard to show that these satisfy the
conditions needed to make R into a special Frobenius object, thus yielding
two different hypergraph category structures on LinRel.

More details can be found in [BF18, Section 5.5 and 7.1].

3 Decorating data

A convenient way to construct hypergraph categories and functors is by
using decorated corelations. In this section we review the decorated cospans
and decorated corelations constructions of [Fon15, Fon18], and we define a
category DecData of “decorating data”. We will eventually see that DecData
contains all the relevant information needed to construct all hypergraph
categories and hypergraph functors between them.

3.1 Decorated cospans

Cospan categories prove useful for representing open networks [RSW05,
Fon16]. However, sometimes it is necessary to record some extra infor-
mation, such as labelings on the edges of a graph, or resistance values on an
electrical circuit. For that, we can extend this structure to allow for what
are called decorations.

Definition 3.1. Let C be a finitely cocomplete category, and consider a
symmetric lax monoidal functor (F,ϕ) : (C,+) → (Set,×). An F -decorated
cospan in C is a pair

N

X Y

i o ,
FN

1

s

where X
i
−→ N

o
←− Y is a cospan in C and s is an element in the set FN . We

say this is a cospan decorated by s.

Two decorated cospans (X
i
−→ N

o
←− Y, s) and (X

i′
−→ N ′ o′

←− Y ′, s′) are
isomorphic if there exists an isomorphism f : N → N ′ of cospans such that
Ff(s) = s′.

Just like in the case of regular cospans, decorated cospans are the mor-
phisms in some category. The following construction is the content of [Fon15,
Prop. 3.2].

8

Definition 3.2. Under the same hypotheses as above, we can define a cate-
gory FCospan whose objects are the same as in C, and whose maps X → Y

are isomorphism classes of F -decorated cospans. Composition of decorated

cospans (X
i
−→ N

o
←− Y, s) and (Y

i′
−→ M

o′
←− Z, t) is given by the usual

composition of cospans,

X
jN i
−−→ N +Y M

jMo′

←−−− Z,

together with the decoration

1 ∼= 1× 1
s×t
−−→ FN × FM

ϕ
−→ F (N +M)

F [jN ,jM]
−−−−−−→ F (N +Y M).

Remark 3.3. We can see in the definition of FCospan why we need the
decorations to be chosen through a lax monoidal functor; this structure is
used to define composition of decorated cospans.

Trivially, we have an embedding

Cospan(C) →֒ FCospan

sending a cospan X
i
−→ N

o
←− Y to the same cospan with empty decoration

(X N Y, 1 F∅ FN),i o ϕ F !

where ! : ∅ → N is the unique such map. It is through this embedding
that FCospan inherits a symmetric monoidal structure, and moreover, a
hypergraph structure, from that of Cospan(C) (see [Fon15, Thm. 3.4]).

3.2 Decorated corelations

Even though decorated cospans are useful for recording extra information
present in open networks, they sometimes fail to be efficient, since they can
carry redundant information that is inaccessible from the boundary. To
solve this problem, decorated corelations were introduced in [Fon18]. We
now recall the definitions.

Definition 3.4. A factorisation system (E ,M) in a category C consists of
a pair of subcategories E ,M of C satisfying the following:

(i) E andM contain all isomorphisms,
(ii) every morphism f in C factors as f = me for some e ∈ E , m ∈ M,
(iii) given factorisations f = me, f ′ = m′e′, for every u, v such that vf =

f ′u, there exists a unique morphism s making the diagram commute

• • •

• • •

e

u

m

s v

e′ m′

9

In particular, note that the last condition implies that factorisations are
unique up to unique isomorphism.

When factoring a map f : X → N in a factorisation system, the notation
we will use is

N

X N

m

f

e

Example 3.5. Given any category C, let IC denote the subcategory contain-
ing all objects of C and isomorphisms between them. Then, there are two
factorisation systems one can always consider: (C,IC) and (IC, C).

When C is clear from context, we will denote IC simply by I.

Example 3.6. A commonly used factorisation system in Set is the pair (E ,M)
where E consists of all surjections andM of all injections.

Example 3.7. Along the same lines as the previous example, any abelian
category admits a factorisation system (E ,M) in whch E is the subcategory
of all epimorphisms andM consists of all monomorphisms.

Definition 3.8. Let C be a finitely cocomplete category and (E ,M) a fac-

torisation system in C. An (E ,M)-corelation is a cospan X
i
−→ N

o
←− Y such

that the universal map from the coproduct of the feet to the apex, displayed
below, belongs to the subcategory E

N

X + Y

X Y

[i,o]i

ιX

o

ιY

Example 3.9. For a simple yet illustrative example, one can quickly check
that (C,IC)-corelations are just cospans in C, and that there exists a unique

(IC , C)-corelation from X to Y ; namely, X
ιX−→ X + Y

ιY←− Y .

If we require (E ,M) to satisfy an additional property that will allow
composition to work properly, these structures can be assembled into the
category described in the following definition, as shown in [Fon18, Thm. 3.1].

Definition 3.10. Let C be a finitely cocomplete category and (E ,M) a
factorisation system in C such thatM is stable under pushout. We can define
a category Corel(E,M)(C) with the same objects as C and with isomorphism
classes of (E ,M)-corelations as morphisms.

Corelations X
i
−→ N

o
←− Y and Y

i′
−→ M

o′
←− Z compose by taking the

pushout as usual, and then factoring the induced map X + Z → N +Y M

10

via the factorisation system (E ,M) as shown in the diagram

N +Y M

N +Y M

N X + Z M

X Y Z

m

jN

e

jM

i

ιX o

o′

ιZi′

The composite is then the corelation X
eιX−−→ N +Y M

eιZ←−− Z.
We will often denote the category Corel(E,M)(C) simply by Corel(C), if

the factorisation system is clear from context.

There exists a functor

Cospan(C)→ Corel(C)

taking a cospan to its E-part; that is, the cospan X
i
−→ N

o
←− Y is associated

the corelation X
eιX−−→ N

eιY←−− Y , where we have the factorisation [i, o] = me.
It is possible to give Corel(C) the structure of a hypergraph category so that
this functor is a hypergraph functor.

Just like in the case of cospans, we can talk about a notion of decora-
tion when dealing with corelations, that allows us to keep track of extra
information.

First, we define a category of “restricted cospans”, where we specify the
subcategories on which the left and right legs of the cospans are allowed to
take values.

Definition 3.11. For C a finitely cocomplete category, andM ⊆ C a sub-
category stable under pushouts, we can define the category C#Mop whose
objects are the same as in C and whose maps X → Y are isomorphism

classes of cospans X
f
−→ N

m
←− Y with f in C and m inM.

This inherits a symmetric monoidal category structure from the coprod-
uct in C, and as such, is a monoidal subcategory of Cospan(C).

Example 3.12. For any finitely cocomplete C, if we setM = C then C#Mop

is precisely Cospan(C).

Definition 3.13. Let C be a finitely cocomplete category,M⊆ C a subcat-
egory stable under pushouts which is part of a factorisation system (E ,M)
in C, and consider a lax symmetric monoidal functor

(F,ϕ) : (C#Mop,+)→ (Set,×).

11

An F -decorated corelation is a pair

N

X Y

i o ,
FN

1

s

where X
i
−→ N

o
←− Y is an (E ,M)-corelation.

Decorated corelations are the morphisms in the following category, con-
structed in [Fon18, Thm. 5.8].

Definition 3.14. Under the same hypotheses as above, we can define a
hypergraph category FCorel whose objects are the same as in C, and whose
mapsX → Y are isomorphism classes of decorated corelations. Composition

of decorated corelations (X
i
−→ N

o
←− Y, 1

s
−→ FN) and (Y

i′
−→ M

o′
←− Z, 1

t
−→

FN) is given by the composition of corelations defined in Defn. 3.10,

X
eιX−−→ N +Y M

eιZ←−− Z

together with the decoration

1 ∼= 1×1
s×t
−−→ FN×FM

ϕ
−→ F (N+M)

F [jN ,jM]
−−−−−−→ F (N+Y M)

Fmop

−−−→ F (N +Y M).

Remark 3.15. Once again, the definition of FCospan makes it clear why we
need the decorations to be chosen through a lax monoidal functor, in this
case, not from C but from C#Mop: it provides the maps we need to compose
decorations.

More explicitly, this is what provides us with the map

F (N +Y M)
Fmop

−−−→ F (N +Y M)

used above; when composing the corelations we get a map N +Y M
m
−→

N +Y M (for reference, see the diagram in Defn. 3.10), from which we can

build the cospan mop := (N +Y M N +Y M N +Y M
m). This is

a morphism in C#Mop from N +Y M to N +Y M ; we then apply F to get

the map F (N +Y M)
Fmop

−−−→ F (N +Y M) that we need.

Let’s elaborate on Example 3.9, and study decorated corelations on the
factorisation systems (I, C) and (C,I).

Example 3.16. For the pair (I, C), we have C#Cop = Cospan(C), and thus
decorated (I, C)-corelations will be given through a lax monoidal functor
F : Cospan(C)→ Set.

For each pair of objects X,Y in C, a morphism in FCorel(I,C) from X to
Y is a pair

(X
ιX−→ X + Y

ιY←− Y, 1
s
−→ F (X + Y))

12

consisting of the unique (I, C)-corelation from X to Y together with a dec-
oration on the apex. We can thus ignore this first coordinate, and set

FCorel(I,C)(X,Y) = F (X + Y).

Composition in this category is given as follows. Write comp for the
cospan

X + Y + Y + Z
idX +[idY ,idY]+idZ
−−−−−−−−−−−−→ X + Y + Z

[ιX ,ιZ]
←−−−− X + Z.

Then composition is given by

F comp ◦ ϕ : F (X + Y)× F (Y + Z)→ F (X + Z).

Example 3.17. If instead we consider the factorisation system (C,I), we see
that C#Iop ∼= C and so decorated (C,I)-corelations will be given through a
lax monoidal functor F : C → Set.

Morphisms in FCorel(C,I) from X to Y are pairs

(X
i
−→ N

o
←− Y, 1

s
−→ F (N))

where the induced map X + Y
[i,o]
−−→ N is in C; this imposes no extra condi-

tions, and so for this factorisation system we have FCorel(C,I) = FCospan.

Observe that we have an embedding Corel(C) →֒ FCorel that sends a

corelation X
i
−→ N

o
←− Y to the same corelation with empty decoration

(X N Y, 1 F∅ FN).i o ϕ F !

Analogously to decorated cospans, the hypergraph structure on FCorel is
inherited from that on Corel(C).

In this paper we show this construction is functorial. But first we have
to define a category of decorating data.

3.3 The category of decorating data

At this point, we have two ways of constructing decorated categories: deco-
rated cospans, and decorated corelations. But decorated cospan categories
are not essential to the picture: in Example 3.17 we saw that FCospan =
FCorel(C,I). Thus it is enough just to think about decorated corelations,
which stem from lax monoidal functors

F : (C#Mop,+)→ (Set,×)

for some category C and some factorisation system (E ,M) in C. These will
be the components of our decorating data category.

13

Definition 3.18. Let FactSys denote the category whose objects are pairs
(C, (E ,M)), where C is a finitely cocomplete category and (E ,M) a factori-
sation system in C, and whose morphisms (C, (E ,M)) → (C′, (E ′,M′)) are
given by finite colimit-preserving functors A : C → C′ such that A(M) ⊆
M′.

There exists a functor

D : FactSysop → Cat

taking a pair (C, (E ,M)) to the category Lax((C#Mop,+), (Set,×)) of lax
symmetric monoidal functors and monoidal natural transformations, and a
map A : (C, (E ,M)) → (C′, (E ′,M′)) to DA = −◦A; that is, precomposition
with the functor A.

Definition 3.19. We introduce the category of decorating data

DecData :=

∫ FactSysop

D,

that is, the Grothendieck construction on the functor D. Recall that the
objects of this category are tuples

(C, (E ,M), F), where (C, (E ,M)) ∈ FactSys, F ∈ Lax(C#Mop,Set),

and the morphisms (C, (E ,M), F) → (C′, (E ′,M′), F ′) consist of pairs (A,α),
where A : C → C′ is a finitely cocontinuous functor satisfying A(M) ⊆ M′,
and α : F ⇒ DA(F ′) is a monoidal natural transformation

C#Mop Set

C′#M′op

F

A
⇓α

F ′

3.4 Decorating corelations is functorial

We now proceed to assemble the decorated corelation construction, ex-
plained in Definition 3.14, into a functor DecData → Hyp. We begin by
recalling a way to obtain hypergraph functors between decorated corelation
categories.

Proposition 3.20. Given a morphism

(A,α) : (C, (E ,M), F) → (C′, (E ′,M′), F ′)

in DecData, we may define a hypergraph functor

(A,α)Corel : FCorel −→ F ′Corel

as follows:

14

• on objects, it takes X ∈ C to AX ∈ C′;

• on morphisms, given an F -decorated corelation

(X
i
−→ N

o
←− Y, 1

s
−→ FN)

we factor the map AX + AY ∼= A(X + Y)
A[i,o]
−−−→ AN in (E ′,M′) as

A(X + Y)
e′
−→ AN

m′

−→ AN , and then consider the corelation

AX
e′ιAX−−−→ AN

e′ιAY←−−− AY.

For the decoration, we precompose F ′(m′op) : F ′AN → F ′AN with
αN : FN → F ′AN to obtain an element

t =
(

F ′(m′op) ◦ αN

)

(s) ∈ F ′AN.

Proof. This can be found in [Fon18, Prop. 6.1].

Theorem 3.21. There exists a functor

(−)Corel : DecData −→ Hyp

which, on objects, takes decorating data (C, (E ,M), F) to the hypergraph
category FCorel, and whose action on morphisms is described in Prop. 3.20.

We will not prove this just yet. It is straightforward, but lengthy, to
give an elementary proof: the map respects composition of corelations and
composition of decorations due to the universal property of the factorisation
systems. We, however, choose to defer this proof to Section 5.2, where we
show that this correspondence can be expressed as the composition of two
functors, and is therefore a functor itself.

4 The category CospanAlg

In this section, we single out a special subcategory

CospanAlg →֒ DecData .

This embedding turns out to be part of an adjunction, which makes CospanAlg
a reflective subcategory of DecData, with the left adjoint being a Kan ex-
tension functor.

15

4.1 The subcategory CospanAlg

If we consider any finitely cocomplete category C as equipped with the trivial
factorisation system (I, C), we may view the category of finitely cocomplete
categories and finite colimit-preserving functors as a subcategory of FactSys.
Restricting our Grothendieck construction to this subcategory gives the sub-
category CospanAlg ⊆ DecData.

Definition 4.1. Write CospanAlg for the full subcategory of DecData whose
objects are the tuples (C, (I, C), F), with trivial factorisation system (I, C).

More explicity still, CospanAlg is the category whose objects are simply
pairs (C, F), where C is a finitely cocomplete category, and F : Cospan(C)→
Set is a lax monoidal functor.

By definition, we have an embedding

ι : CospanAlg →֒ DecData .

It is also possible to construct a functor in the other direction, which we call
Kan since it consists of taking the left Kan extension of the lax monoidal
functors present in DecData.

Proposition 4.2. There exists a functor

Kan : DecData→ CospanAlg

taking decorating data (C, (E ,M), F) to the cospan algebra (C, LanF), where
LanF is the left Kan extension of F along the inclusion C#Mop →֒ Cospan(C):

C#Mop Set

Cospan(C)

F

⇓κ

LanF

For a morphism (A,α) : (C, (E ,M), F)→ (C′, (E ′,M′), F ′), the associ-
ated map of cospan algebras

Kan(A,α) : (C, LanF)→ (C′, LanF ′)

is the pair (A, β), where β : LanF ⇒ LanF ′A is the natural transformation
given by the universal property of (LanF, κ).

Proof. In order for this definition to be correct, we must make sure that
the image of Kan lands in CospanAlg as claimed; that is, that (C, LanF) is a
cospan algebra and the map (A, β) : (C, LanF) → (C′, LanF ′) defined above
is a morphism of cospan algebras.

This amounts to proving that the functor LanF is lax monoidal, and
that the natural transformation β given by the universal property is also

16

monoidal, which is ensured by Proposition 1.1 (a) and (c) in [FP18]. Check-
ing that our setting fits the hypotheses of this result is mostly a matter of
checking LanF × LanF is a Kan extension of F × F ; this is straightforward,
and can be done analogously to our proof of Proposition 4.4.

Finally, the functoriality of Kan is a routine check.

We end this section with the following result, showing that the two func-
tors we just defined are adjoints.

Proposition 4.3. The functor Kan is left adjoint to ι.

DecData CospanAlg
Kan

ι
⊥

Proof. Recall that left Kan extension is left adjoint to precomposition giving,
for each C#Mop →֒ Cospan(C),

Lax(C#Mop,Set) Lax(Cospan(C),Set)
Lan

⊥ (1)

Thus for the unit and counit of the adjunction Kan ⊢ ι, we may use those
of the adjunctions (1). These then immediately obey the triangle equations,
the unit is natural because precomposition with C#Mop →֒ Cospan(C) is
natural in FactSys (and the universal property of left Kan extension), and
the counit is natural because it is in fact the identity.

In particular, the above result implies that CospanAlg is a reflective sub-
category of DecData.

4.2 An explicit formula for Kan

In Proposition 4.2 above, the functor Kan : DecData → CospanAlg was de-
fined rather abstractly, making use of the universal property of left Kan
extensions. We wish to give a more explicit description of this functor, that
will allow us to compare it to other constructions and get a good sense of
how this fits into our machinery for building hypergraph categories.

Recall, for example from [Mac98, Thm. X.3.1], that in a finitely cocom-
plete category left Kan extensions can be computed by the formula

LanF (−) = colim(ι↓(−)
proj
−−→ C#Mop F

−→ Set).

A careful inspection of this colimit yields the following two propositions;
elementary proofs are also provided in Appendix A.

Proposition 4.4 (Kan on objects). Let (C, (E ,M), F) be an object on DecData.
Then the left Kan extension of F along the embedding C#Mop →֒ Cospan(C)
is the functor LanF : Cospan(C)→ Set which takes an object X in C to

LanFX = {(X
e
−→ N, 1

s
−→ FN)},

17

where e represents an isomorphism class of objects in X↓E.

Given a morphism f = (X
i
−→ M

o
←− Y) in Cospan(C) and an element

(X
e
−→ N, 1

s
−→ FN) in LanFX, we compose eop with f to get a cospan

N
jN−→ N +X M

jMo
←−− Y . Factoring the right leg of this cospan in (E ,M),

we obtain maps

Y
e′
−→ N +X M

m
−→ N +X M.

We then define

LanF (f) : LanFX −→ LanFY

(X
e
−→ N, s) 7−→ (Y

e′
−→ N +X M, F (mop)F (jN)(s)).

Furthermore, the associated natural transformation

C#Mop Set

Cospan(C)

⇓κ

F

LanF

is defined on each component by

κX : FX −→ LanFX

s 7−→ (X X, s).

Proposition 4.5 (Kan on morphisms). Let

(A,α) : (C, (E ,M), F)→ (C′, (E ′,M′), F ′)

be a morphism on DecData. Then, the map of cospan algebras

Kan(A,α) : (C, LanF)→ (C′, LanF ′)

is the pair (A, β). Here β : LanF ⇒ LanF ′A is the natural transformation
whose components βX : LanFX → LanF ′AX are given by

(X
e
−→ N, s) 7→ (AX

e′
−→ AN,F ′(m′op)αN (s)),

where we have the (E ′,M′)-factorisation Ae = m′ ◦ e′.

5 Deconstructing decorated corelations

In this section we prove our main result, that the decorated corelations
construction factors as Kan then Φ, and hence is functorial.

18

5.1 Decorating using cospan algebras

When restricting the decorated cospan constructions to the category CospanAlg,
where the factorization systems considered are trivial, verifying that the cor-
respondence is functorial becomes a simple check.

Lemma 5.1. Write Φ for the restriction of the map (−)Corel : DecData→
Hyp to the subcategory CospanAlg ⊆ DecData. The map

Φ: CospanAlg→ Hyp

is functorial.

Proof. It is immediate that Φ preserves identities. Suppose we have the pair
of composable morphisms

Cospan(C)

Cospan(C′) Set

Cospan(C′′)

FA
⇓α

F ′

B
⇓β

F ′′

in CospanAlg. We must show that

(B, β)Corel ◦ (A,α)Corel = (BA, β ◦ α)Corel.

On objects this is easy: both functors map each object X of FCorel to BAX

in F ′′Corel.
For morphisms, recall from Example 3.16 that since F is in CospanAlg, a

morphism X → Y in FCorel is simply an element s ∈ F (X+Y). By Propo-
sition 3.20, the images of this morphism s under the functors (B, β)Corel ◦
(A,α)Corel and (BA, β ◦ α)Corel are given respectively by the upper and
lower composites in the diagram

1 F (X + Y) F ′A(X + Y) F ′(AX +AY)

F ′′BA(X + Y) F ′′B(AX +AY) F ′′(BAX +BAY)

s αX+Y F ′(∼)

βA(X+Y) βAX+AY

F ′′B(∼) F ′′(∼)

where ∼ are the relevant maps given by the universal property of the coprod-
uct, which are isomorphisms since A and B are cocontinuous. The square
commutes by the naturality of β; this proves the two required functors are
equal.

19

5.2 Decorated corelations is Kan then Φ

First, we must understand how the functor Kan interacts with decorating
corelations. We show that (−)Corel factors through CospanAlg.

Theorem 5.2. The diagram

CospanAlg

Hyp

DecData

Φ

Kan

(−)Corel

commutes in Cat.

To prove this, we show the following two lemmas, which separately study
the action of these correspondences on objects and on maps.

Lemma 5.3. Let (C, (E ,M), F) be an object in DecData. Then

FCorel(E,M) = (LanF)Corel(I,C)

as hypergraph categories.

Proof. Note that, by Proposition 3.20, the pair (idC , κ), where κ is the canon-
ical natural transformation F → LanF ◦ ι of the left Kan extension, induces
a hypergraph functor I := (idC , κ)Corel : FCorel(E,M) → (LanF)Corel(I,C).
Simply by unpacking definitions, we will show that I is identity-on-objects
and identity-on-morphisms.

The object case is trivial: both FCorel(E,M) and (LanF)Corel(I,C) have
the same objects as C, and idC is the identity functor, so I is identity-on-
objects.

Let’s now consider morphisms. Fix objects X,Y in C. The homset
FCorel(E,M)(X,Y) is the set of isomorphism classes of F -decorated (E ,M)-

corelations (X
i
−→ N

o
←− Y, s ∈ FN). On the other hand, Example 3.16

shows that the homset (LanF)Corel(I,C)(X,Y) = LanF (X + Y), and by
Proposition 4.4, this set is just the set of isomorphism classes of pairs (X +
Y

e
−→ N, s ∈ FN). By a very minor abuse of notation, we consider (E ,M)-

corelations X
i
−→ N

o
←− Y to be the same as maps X + Y

e
−→ N , and hence

consider FCorel(E,M)(X,Y) equal to (LanF)Corel(I,C)(X,Y). It remains to
check that I is the identity on this set.

Let (X
i
−→ N

o
←− Y, s ∈ FN) be an F -decorated (E ,M)-corelation. By

Proposition 3.20, its image is
(

LanF ([i, o]op)
)

◦κ(s). But by Proposition 4.4,

this is exactly the pair (X + Y
[i,o]
−−→ N, s ∈ FN), which we consider to the

same as the corelation we started with. Thus I is identity-on-morphisms,
and thus FCorel(E,M) = (LanF)Corel(I,C) as hypergraph categories.

20

Lemma 5.4. Let (A,α) : (C, (E ,M), F) → (C′, (E ′,M′), F ′) be a morphism
in DecData. Then

(A,α)Corel = (Kan(A,α))Corel

as hypergraph functors FCorel→ F ′Corel.

Proof. This is precisely the statement of Prop. 4.5, when compared to the
definition of the functor (−)Corel given in Thm. 3.21.

Proof of Theorems 3.21 and 5.2. By Lemmas 5.3 and 5.4, we see respec-
tively that on objects and on morphisms we have (−)Corel = Φ ◦Kan. Since
Kan is functorial by Definition 4.2, and Φ: CospanAlg → Hyp is functorial
by Lemma 5.1, this implies that (−)Corel : DecData → Hyp is functorial.
This proves Theorem 3.21.

Moreover, now that we know (−)Corel is a functor, Lemmas 5.3 and 5.4
prove the diagram commutes in Cat, so we also have Theorem 5.2.

6 All hypergraph categories are decorated corela-

tion categories

We devote this section to showing that every hypergraph category can be
expressed, up to equivalence, as a decorated corelation category built from
some decorating data. This supports our claim that DecData is a suitable
setting in which to work when constructing black-box functors.

Furthermore, if the hypergraph category is object-wise free, we can re-
cover it as a decorated corelation category up to isomorphism.

6.1 From hypergraph categories to cospan algebras

Given a hypergraph category H, we can construct a cospan algebra in two
steps. First, we make use of the fact that Cospan(FinSet) is the free hyper-
graph category, and use this to construct a functor from ObH-many copies
of Cospan(FinSet) to H, that describes the Frobenius structure in H. Sec-
ond, we then use the hom functor on the monoidal unit H(I,−) : H → Set

to capture the homsets of H. As we shall see, this is enough to construct a
cospan algebra that captures all the structure of H.

Definition 6.1. Let Λ be a set. The comma category FinSetΛ := FinSet ↓Λ
is the one whose objects are functions x : n → Λ for some finite set n, and
whose morphisms (n

x
−→ Λ) → (m

y
−→ Λ) are functions f : n → m such that

the diagram below commutes

n m

Λ

f

x y

21

Alternatively, objects of FinSetΛ can be interpreted as finite lists of ele-
ments in Λ. We call the objects of FinSetΛ labelled finite sets, and Λ the set
of labels.

Remark 6.2. Using colimits in Set, it is easy to show that FinSetΛ is finitely
cocomplete. In fact, it will be important that FinSetΛ is the free finitely
cocomplete category on Λ [Joh77, Ch. 6].

Proposition 6.3. Let H be a hypergraph category. There exists an identity-
on-objects hypergraph functor

Frob : Cospan(FinSetObH)→H

whose image is the subcategory of H generated by the Frobenius morphisms
of the hypergraph structure.

Proof. Theorem 3.14 of [FS18] states that given a set Λ, Cospan(FinSetΛ)
is the free hypergraph category on the set Λ. The functor Frob is the map
given by this universal property. More concretely, it is the functor gener-
ated by sending, for every X ∈ ObH, the morphism (X,X) → X ← X in
Cospan(FinSetObH) to µX , ∅ → X ← X to ηX , X → X ← (X,X) to δX ,
and X → X ← ∅ to ǫX .

Proposition 6.4. We can construct a functor

Alg : Hyp→ CospanAlg

sending a hypergraph category H to the pair (FinSetObH, AH), where

AH : Cospan(FinSetObH)→ Set

is defined by AH(−) := H(I,Frob(−)).
On morphisms, Alg maps a hypergraph functor F : H → K to the pair

(AF , α), where AF : FinSetObH → FinSetObK is the functor taking a list
(X1, . . . ,Xn) in H to the list (FX1, . . . FXn) in K (and is identity on mor-
phisms), and

α : H(I,Frob(−))⇒ K(I,FrobAF (−))

is the natural transformation given by

α(X1,...,Xn) : H(I,X1 ⊗ · · · ⊗Xn)→ K(I, FX1 ⊗ · · · ⊗ FXn))

(I
s
−→ X1 ⊗ · · · ⊗Xn) 7→ (I

ϕI−→ FI
ϕ−1Fs
−−−−→ FX1 ⊗ · · · ⊗ FXn),

where ϕI and ϕ denote structure maps of the (strong) monoidal functor F .

22

Proof. First, we note that Alg(H) is indeed an object of CospanAlg, since
the functor AH is the composite of the monoidal functor Frob constructed
in Proposition 6.3, with the hom functor on the monoidal unit (which is lax
monoidal), and is therefore lax monoidal.

Moreover, it is easy to see that AF preserves finite colimits, and that
α is a monoidal natural transformation (which follows from the hypergraph
functor structure of F); this implies (AF , α) is a morphism in CospanAlg.

These two facts show that Alg is well defined. The functoriality of Alg
is a routine check.

6.2 Hyp is a coreflective subcategory of CospanAlg

We now prove that the functors Φ : CospanAlg → Hyp and Alg : Hyp →
CospanAlg are adjoint. We shall need the following technical lemma.

Lemma 6.5. Let C be a small finitely cocomplete category. There exists a
functor

Mon : FinSetObC → C

taking a list (X1, . . . ,Xn) of objects of C to the object X1 + · · ·+Xn, and a

map f : (n
x
−→ Λ)→ (m

y
−→ Λ) to the morphism X1+ · · ·+Xn → Y1+ · · ·+Ym

in C induced by the maps

Xi
id
−→ Xi = Yf(i)

ιYf(i)
−−−→ Y1 + · · ·+ Ym.

Furthermore, this functor is finitely cocontinuous.

Proof. Functoriality of Mon is evident, and it is straightforward to prove,
for example, that Mon preserves finite coproducts and coequalizers.

Theorem 6.6. The functor Alg is left adjoint to Φ.

Hyp CospanAlg
Alg

Φ

⊥

Proof. Let H be a hypergraph category; applying ΦAlg to H yields

H
Alg
7−−→ (FinSetObH, H(I,Frob(−)))

Φ
7−→ H(I,Frob(−))Corel.

Observe that objects in H(I,Frob(−))Corel are lists in ObH, and mor-
phisms X → Y are the elements in H(X,Y); this allows us to define the
unit of the adjunction as the natural transformation whose components are
the functors

ηH : H → H(I,Frob(−))Corel

X 7→ (X)

23

mapping an object X to the list with only one entry valued in X, and given
by the identity on maps.

Now, let (C, F) be an object in CospanAlg. Applying AlgΦ to (C, F) gives

(C, F)
Φ
7−→ FCorel

Alg
7−−→ (FinSetObFCorel, FCorel(I,Frob(−))).

Since ObFCorel = ObC, and morphisms I → X in FCorel are the elements
in FX, we let the counit (Mon, id) be given by the commutative diagram:

Cospan(FinSetObFCorel) Set

C

FCorel(I,Frob(−))

Frob
F

where we note that the extension of the functor Mon defined in Lemma 6.5
to the domain Cospan(FinSetObFCorel) is equal to Frob. Note that η and ǫ

are well-defined, since ηH is clearly a hypergraph functor for every H, and
Mon is a finitely cocontinuous functor. It is easy to verify the naturality of
η and ǫ, and that the triangle conditions are satisfied.

Remark 6.7. In the proof of Thm. 6.6 we can see that, for every hypergraph
category H, the corresponding component of the unit

ηH : H → H(I,Frob(−))Corel

is an equivalence of hypergraph categories.
This means every hypergraph category is equivalent to FCorel for some

choice of lax monoidal functor F . This fact ensures that CospanAlg, and
by extension, DecData, are sufficiently general to handle all hypergraph
categories; an important fact for applications.

6.3 Recovering the hypergraph category up to isomorphism

Previously, we saw the unit of the adjunction Alg ⊣ Φ only recovered a
hypergraph category H up to equivalence. In the special case that H is ob-
jectwise free—meaning, is strict and has monoid of objects freely generated
by some set Λ—[FS18] shows that we can use similar techniques to recover
H up to isomorphism. In this section we describe the relationship between
these two constructions.

Write HypOF for the full subcategory of Hyp with objects those hyper-
graph categories that are objectwise free, and write CospanAlgLFS for the full
subcategory of CospanAlg with objects those cospan algebras with domain
the category FinSetΛ of Λ-labelled finite sets for some set Λ.

24

Proposition 6.8. There exists an equivalence of categories

HypOF CospanAlgLFS
Alg′

Φ′

such that
HypOF Hyp

CospanAlgLFS CospanAlg

Φ′ ∼= Φ (2)

commutes and there exists a natural transformation

HypOF Hyp

CospanAlgLFS CospanAlg

A′ ∼= Alg
α

Proof. The functors Φ′ and Alg′ witnessing the above equivalence of cate-
gories are given in Theorem 4.15 in [FS18], where in that case they have the
notation H− and A− respectively.

The commutativity of the square (2) states that the functor Φ′ is a
restriction of Φ: CospanAlg → Hyp to the subcategory CospanAlgLFS. Re-
ferring to [FS18], it is easy to observe that Φ′ is indeed the restriction of Φ
to the subcategory CospanAlgLFS of CospanAlg; here, we may take this as the
definition of Φ′. It is then straightforward to see that the image of Φ′ lies
in HypOF, since the objects and monoidal structure of FCorel are inherited
from the domain of F , and for every object of CospanAlgLFS the domain is
some objectwise free category FinSetΛ.

The natural transformation α is defined as follows. Let H be a strict
hypergraph category with objects generated by Λ. Then Λ is some subset
of ObH, and this inclusion g induces an inclusion functor G : FinSetΛ →
FinSetObH. On objects, the functor Alg′ is defined to map a hypergraph
category H to the cospan algebra (FinSetΛ,H(I,−) ◦ FrobH ◦G), and the
component of the natural transformation α at H is given by the finite colimit
preserving functor G with the identity monoidal natural transformation

Cospan(FinSetΛ)

Set

Cospan(FinSetObH)

H(I,−)◦FrobH ◦G

G

H(I,−)◦FrobH

In particular, this means that if H has monoid of objects generated by
some set Λ, then we apply Alg′ to obtain a representation of the hypergraph

25

category as decorating data, and then taking decorated corelations on that
data returns a hypergraph category isomorphic to H.

Corollary 6.9. Let H be an objectwise-free strict hypergraph category. Then
there is an identity-on-objects isomorphism H ∼= Alg′(H)Corel.

7 An application: reaction networks

To conclude, we give a novel construction of the black box functor for reac-
tion networks.

7.1 The black box functor for reaction networks

As mentioned in the introduction, the language of category theory and, in
particular, of decorating data, is especially useful to express the semantics of
open dynamical systems. As the name suggests, these consist of dynamical
systems which allow for a notion of inflow and outflow. In their work [BP17],
Baez and Pollard assemble open dynamical systems into a decorated cospan
category defined as follows.

Definition 7.1. Let Dynam := DCospan, where D : FinSet→ Set is the lax
monoidal functor which maps a finite set X to the set

DX := {v : RX → R
X | v is an algebraic vector field}

of all algebraic vector fields on R
X .

A function f : X → Y is mapped by D to the function

Df : DX −→ DY

v 7−→ f∗ ◦ v ◦ f
∗

where f∗ : RY → R
X is the pullback, given by f∗(c)(x) = c(f(x)), and

f∗ : R
X → R

Y is the pushforward, defined as f∗(c)(y) =
∑

x∈f−1(y) c(x).

An open dynamical system is a morphism (X
i
−→ N

o
←− Y, RN v

−→ R
N) in

the category Dynam, where i : X → N and o : Y → N mark the inflow and
outflow variables, and v is an algebraic vector field. Given an inflow I ∈ R

X

and an outflow O ∈ R
Y , the total flow of the system is given by the equation

v(c) + i∗I(c)− o∗O(c).
Just like with their non-open counterparts, it is of interest to study the

steady states of an open system; the main difference being that now the
possible action of inflows and outflows must also be taken into account.
Given an open dynamical system as above, a steady state with inflows I

and outflows O is an element c ∈ R
N satisfying

v(c) + i∗I(c)− o∗O(c) = 0. (3)

26

The set of solutions to such equations form what is known as a semialgebraic
relation.

A semialgebraic subset of the vector space Rn is a finite union of subsets
of Rn of the forms {v | P (v) = 0} and {v | P (v) > 0}, where P : Rn → R

is any polynomial P (x1, . . . , xn) in the coordinates of R
n. The property

of being semialgebraic is invariant under linear transformations, and hence
we can define semialgebraic subsets for any finite dimensional vector space
V : they are simply subsets that are semialgebraic under any isomorphism
V ∼= R

n.
A semialgebraic relation R

m → R
n is then a binary relation S ⊆ R

m⊕Rn

that forms a semialgebraic subset. Semialgebraic relations are closed under
composition of relations. We thus have a category.

Definition 7.2. The category SARel is the category with finite dimensional
vector spaces as objects and semialgebraic relations between them as mor-
phisms.

Baez and Pollard study reaction networks by creating a black-box functor
which takes an open dynamical system to the set of possible input and output
flows and concentrations that yield open steady states of the system.

Theorem 7.3. There exists a symmetric monoidal functor

� : Dynam→ SARel

taking a finite set X to the vector space R
X ⊕ R

X , and a morphism (X
i
−→

N
o
←− Y, v) to the semialgebraic subset of steady states

{(i∗c, I, o∗c,O) | v(c) + i∗I − o∗O = 0} ⊆ R
X ⊕ R

X ⊕R
Y ⊕ R

Y .

Proving this theorem requires some work and, more importantly, some
ingenuity.

In this final section, we show that Theorem 7.3 is a corollary to a
stronger, and more structured result (Cor. 7.8) that is easily derived from
working within the framework of decorated corelations. This stronger result
constructs an objectwise free hypergraph category SARelH of semialgebraic
relations and a hypergraph functor Dynam→ SARelH. Instead of construct-
ing the hypergraph functor directly, however, we find it is simpler to use the
functor

HypOF
Alg′

−−→ CospanAlg
ι
−֒→ DecData

to find decorating data S for SARelH, and then construct a morphism of
decorating data from D to S. Using the decorated corelations construction,
we find that converting this morphism back to a hypergraph functor then
easily implies the existence of the black box functor �.

27

In short, recall the functors

Hyp ⊥ CospanAlg ⊤ DecData .
Alg

Φ

ι

Kan

We find it easier to work on the right, in DecData, than on the left, in Hyp.

7.2 The hypergraph category of semialgebraic relations

As mentioned above, we are interested in SARel as the codomain for the
black box functor. Note, however, that the image of � lies within the full
subcategory of SARel whose objects are of the form R

X ⊕R
X , for any finite

set X.

Definition 7.4. Let SARelH be the full symmetric monoidal subcategory of
SARel whose objects are of the form R

X ⊕ R
X for some finite set X.

We will see that this category is a more suitable semantic category for
studying reaction networks. The reason for this is that having restricted
the objects to those in the image, SARelH can now be equipped with a se-
mantically meaningful hypergraph structure. Namely, recall that from the
point of view of the reaction network, the two summands of the vector space
R
X⊕R

X represent the spaces of concentrations and flows respectively. Con-
centrations and flows require different Frobenius structures to describe how
they transform under coupling of reaction networks: we set concentrations
equal, and add their flows. This is reminiscent of the case of potential and
current in electric circuits and other passive linear networks in [BF18], where
the same structure is discussed in Sections 5.5 and 7.1.

More formally, we can obtain this hypergraph structure from the two
different such structures present in LinRel, as described in Example 2.5.
Observe that every linear subspace is semialgebraic, so there is an inclusion
functor LinRel →֒ SARel. Denote the two Frobenius structures on R ∈ LinRel

in Example 2.5 by (R, µ1, η1, δ1, ǫ1) and (R, µ2, η2, δ2, ǫ2). The object R⊕R

can be given the Frobenius structure
(

R⊕ R, (µ1 ⊕ µ2) ◦ σ2,3, η1 ⊕ η2, σ2,3 ◦ (δ1 ⊕ δ2), ǫ1 ⊕ ǫ2
)

(4)

where σi,j is the map that permutes the coordinates i and j. In short, the
object R ⊕ R is given the first Frobenius structure in the first coordinate,
and the second in the second.

Then, since every object RX ⊕R
X in the category SARelH is canonically

isomorphic to the monoidal product of |X| copies of R⊕ R, every object in
SARelH inherits a Frobenius structure from R ⊕ R, and this equips SARelH
with the structure of a hypergraph category. Moreover, note that the objects
of SARelH can simply be considered finite sets, and hence the objects of
FinSet.

This yields the following proposition.

28

Proposition 7.5. With the hypergraph structure of (4), SARelH is a strict
hypergraph category with objects free on the one element set 1.

7.3 A new viewpoint on the black box functor

As SARelH is objectwise free, we may apply the functor Alg′ of Proposi-
tion 6.8 to yield the cospan algebra

S := SARelH(0,Frob(−)) : Cospan(FinSet)→ Set,

where 0 is the zero dimensional vector space. Note that Frob sends a finite set
X to the object RX⊕RX of SARelH, and hence on objects this functor sends a
finite set X to the set of semialgebraic subsets of RX ⊕R

X . On morphisms,
loosely speaking, it sends a cospan of finite sets to its interpretation as
Frobenius maps using the hypergraph structure of SARelH. Note that by
Corollary 6.9, we have an identity on objects isomorphism SCorel ∼= SARelH.

Remark 7.6. Note that while SCorel ∼= SARelH, there is a slight, but only
cosmetic, difference in conventions for presenting morphisms. Indeed, in
SCorel a morphism X → Y is specified by a subspace of RX+Y ⊕ R

X+Y ,
rather than a subspace of RX ⊕R

X ⊕ R
Y ⊕ R

Y .
More subtly, due to the nature of the additive Frobenius structure on

the second ‘flow’ coordinate of each object in SARelH, composition in this
second coordinate is given by summing to zero, rather than equality. That
is, given decorations U ⊆ R

X+Y ⊕ R
X+Y and V ⊆ R

Y+Z ⊕ R
Y+Z , their

composite, as defined in Defn. 3.14, can be shown to be given by the subset

{(cX , cZ , fX , fZ) | ∃cY , fY .(cX , cY , fX ,−fY) ∈ U, (cY , cZ , fY , fZ) ∈ V }

of RX+Z ⊕ R
X+Z . This difference with relational composition leads to the

sign difference for o∗O in equations (3) above and (5) below: in the former
o∗O describes net flow out, while in the latter o∗O describes net flow in (and
hence has a negative sign).

We now have two objects of DecData: the data (FinSet, (FinSet,I), D)
from which Dynam is constructed, and the data (FinSet, (I,FinSet), S) from
which SARelH is constructed. By abuse of notation we’ll just refer to these
objects as D and S respectively.

We now wish to define a morphism of decorating data D → S. As we
know, this is given by a pair (A,α) consisting of a finitely cocontinuous
functor A : FinSet→ FinSet and a natural transformation α : D ⇒ S ◦ A.

Proposition 7.7. For all finite sets X, define αX : DX → SX to be the
function

αX :
{

v : RX → R
X
∣

∣ v algebraic
}

−→
{

R ⊆ R
X ⊕ R

X
∣

∣R semialgebraic
}

29

sending an algebraic vector field v to its graph Gr(v) = {(c, v(c))} ⊆ R
X ⊕

R
X . This defines a monoidal natural transformation

FinSet Set

Cospan(FinSet)

⇓α

D

S

Proof. Since v is algebraic, its graph Gr(v) := {(c, v(c))} ⊆ R
X⊕RX forms a

semialgebraic subset, and thus α is well defined. Showing that α is natural
in FinSet amounts to proving that, for any function f : X → Y and any
algebraic vector field v ∈ DX we have

Frob(f)Gr(v) = Sf ◦ αX(v) = αY ◦Df(v) = Gr(f∗vf
∗)

in the set SY of semialgebraic subsets of RY ⊕R
Y , where we abuse notation

to also write f for the cospan X
f
−→ Y

idY←−− Y .
To prove this, we must more closely examine the Frobenius structure in

SARelH. In particular, we must understand the semialgebraic (and in fact
linear) relation Frob(f) : RX ⊕ R

X → R
Y ⊕ R

Y . It is not difficult to show
that this is given by the notion of pushforward and pullback, so that

Frob(f) = {(f∗b, a, b, f∗a)} ⊆ R
X ⊕ R

X ⊕ R
Y ⊕ R

Y .

See for example [BF18, §5.5, §7.1]. This immediately implies naturality:

Frob(f)Gr(v) = {(d, f∗v(c)) | f
∗d = c} = {(d, f∗vf

∗(d))} = Gr(f∗vf
∗).

Applying the functor (−)Corel to the morphism (id, α) : D → S gives the
following corollary.

Corollary 7.8. There exists a hypergraph functor

� : Dynam→ SCorel ∼= SARelH .

On objects, this functor maps a finite set X to the vector space R
X ⊕ R

X .

On morphisms, it maps a D-decorated cospan (X
i
−→ N

o
←− Y, v) to the

decoration that results from the composition

v
α
7−→ {(c, v(c))}

S[i,o]op

7−−−−→ {(i∗c, o∗c, I,O) | v(c) = i∗I + o∗O}. (5)

Proof. Recall that the action of the functor (−)Corel on morphisms is given
in Prop. 3.20. In particular, note that

S[i, o] = Frob[i, o] = {(i∗c, o∗c, I,O, c, i∗I+o∗O)} ⊆ R
X+Y⊕RX+Y⊕RN⊕RN ,

yielding the map (5).

This functor is, up to a restriction of the codomain to SARelH ⊆ SARel,
equal to black box functor � constructed in [BP17].

30

References

[ASW11] L. de F. Albasini, N. Sabadini, R. F. C. Walters, The
compositional construction of Markov processes, Ap-

plied Categorical Structures, 19(1):425–437 (2011).
doi:10.1007/s10485-010-9233-0.

[BF18] J. C. Baez and B. Fong, A compositional framework for passive
linear networks. Available as arXiv:1504.05625.

[BFP16] J. C. Baez, B. Fong and B. S. Pollard, A compositional frame-
work for Markov processes, J. Math. Phys., 57 (2016), 033301.
Also available as arXiv:1508.06448.

[BP17] J. C. Baez and B. S. Pollard, A compositional framework for
reaction networks, Rev. Math. Phys. 29 (2017), 1750028. Also
available as arXiv:1704.02051.

[Ben67] J. Bénabou, Introduction to bicategories I. In Reports of the

Midwest Category Seminar, Lecture Notes in Mathematics 47:1–
77, Springer, 1967.

[BSZ17] F. Bonchi, P. Sobocinski, F. Zanasi, The Calculus of Signal Flow
Diagrams I: Linear Relations on Streams, Information and Com-

putation, 252:2–29 (2017). doi:10.1016/j.ic.2016.03.002.

[Car91] A. Carboni, Matrices, relations and group representations, J.

Algebra, 138:497–529 (1991).

[Fon15] B. Fong, Decorated cospans, Theory Appl.

Categ., 30 (2015), 1096–1120. Available at
http://www.tac.mta.ca/tac/volumes/30/33/30-33abs.html.

[Fon16] B. Fong, The Algebra of Open and Interconnected Systems,
Ph.D. thesis, Department of Computer Science, University of
Oxford, 2016. Available as arXiv:1609.05382.

[Fon18] B. Fong, Decorated corelations, Theory Appl.

Categ., 33 (2018), 608–643. Available at
http://www.tac.mta.ca/tac/volumes/33/22/33-22abs.html.

[FS18] B. Fong and D. I. Spivak, Hypergraph categories. Available as
arXiv:1806.08304.

[FP18] T. Fritz and P. Perrone, A criterion for Kan extensions of lax
monoidal functors. Available as arXiv:1809.10481.

31

https://doi.org/10.1007/s10485-010-9233-0
https://arxiv.org/abs/1504.05625
https://arxiv.org/abs/1508.06448
https://arxiv.org/abs/1704.02051
https://doi.org/10.1016/j.ic.2016.03.002
http://www.tac.mta.ca/tac/volumes/30/33/30-33abs.html
http://arxiv.org/abs/1609.05382
http://www.tac.mta.ca/tac/volumes/33/22/33-22abs.html
https://arxiv.org/abs/1806.08304
https://arxiv.org/abs/1809.10481

[GKS17] A. Gianola, S. Kasangian, N. Sabadini, Cospan/Span(Graph):
an algebra for open, reconfigurable automata networks, CALCO
2017, 2:1-2:17 (2017). doi:10.4230/LIPIcs.CALCO.2017.2.

[Joh77] P. T. Johnstone, Topos Theory, Academic Press, New York,
1977.

[KSW00] P. Katis, N. Sabadini, R. F. C. Walters, On the algebra of
systems with feedback and boundary, Rendiconti del Circolo

Matematico di Palermo Serie II, Suppl. 63 (2000), 123–156.

[Mac98] S. Mac Lane, Categories for the Working Mathematician, 2nd
ed., Springer, New York, 1998.

[RSW05] R. Rosebrugh, N. Sabadini and R. F. C. Walters,
Generic commutative separable algebras and cospans of
graphs, Th. App. Cat. 15 (2005), 264–277. Available at
http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html.

[RSW08] R. Rosebrugh, N. Sabadini and R. F. C. Walters, Calculat-
ing colimits compositionally, in P. Degano et al., Concurrency,
Graphs and Models, Lecture Notes in Computer Science, vol.
5065, Springer, Berlin, 2008, pp. 581–592. Also available as
arXiv:0712.2525.

32

https://doi.org/10.4230/LIPIcs.CALCO.2017.2
http://www.tac.mta.ca/tac/volumes/15/6/15-06abs.html
https://arxiv.org/abs/0712.2525

A The explicit computation of Kan

Proof of Proposition 4.4. Verifying that κ is a natural transformation is vir-
tually immediate; instead, we focus on proving that the universal property
of the left Kan extension is satisfied.

For this, suppose there exists a functor G : Cospan(C) → Set and a nat-
ural transformation γ as on the right below; we wish to show there exists a
unique β : LanF ⇒ G such that we have the equation

C#Mop Set

Cospan(C)

⇓κ

F

LanF

G
⇓β

=

C#Mop Set

Cospan(C)

F

⇓γ

G

Given an object X in C, let βX : LanFX → GX be the function

(X
e
−→ N, s ∈ FN) 7→ G(eop)γN (s).

Then, for every X, the composition βXκX is the correspondence

s
κX7−−→ (X X, s)

βX7−−→ G(idop)γX(s) = γX(s)

and so the above equality is satisfied.

To show that β is natural, let f = (X
i
−→M

o
←− Y) be a map in Cospan(C),

and (X
e
−→ N, s) an element in LanFX. Denoting the composition by feop =

(N
jN−→ N+XM

jMo
←−− Y) and the factorisation of the right leg of this cospan

by Y
e′
−→ N +X M

m
−→ N +X M , we see that

(X
e
−→ N, s)

LanF (f)
7−−−−−→

(

Y
e′
−→ N +X M, F (mop)F (jN)(s)

)

βY7−−−−−→ G(e′
op
)γN+XMF (mop)F (jN)(s).

On the other hand, we have

(X
e
−→ N, s)

βX7−−→ G(eop)γN (s)
G(f)
7−−−→ G(f)G(eop)γN (s).

The naturality of γ, together with the fact that the cospans feop and
e′
op
mopjN belong to the same isomorphism class, imply these two com-

positions yield the same result.
To prove uniqueness, assume there exists another natural transformation

β′ : LanF ⇒ G such that β′
X(X X, s) = γX(s) for every X. Consider

any other element (X
e
−→ N, t) in LanFX; using the naturality of β′, and

33

chasing the element (N N, t) along the commutative diagram

LanFN GN

LanFX GX

β′

N

LanF (eop) G(eop)

β′

X

gives
β′
X(X

e
−→ N, t) = G(eop)γN (t)

which is, by definition, equal to βX(X
e
−→ N, t). This implies β′

X = βX for
every X, which concludes our proof.

Proof of Proposition 4.5. According to Proposition 4.2, β is the (unique)
natural transformation such that

C#Mop

Cospan(C) Set

Cospan(C′)

Fι
⇓κ

A
⇓β

LanF

LanF ′

=

C#Mop

Cospan(C) Set

Cospan(C′)

Fι

⇓κ′α

A
LanF ′

Following the proof of Proposition 4.4, we have G = LanF ′A and γ =
κ′α : F ⇒ LanF ′A, which is defined as

γX(s) = κ′AXαX(s) = (AX AX,αX (s)).

Thus, β : LanF ⇒ LanF ′A is given on its X-component by

(X
e
−→ N, s ∈ FN) 7→ LanF ′A(eop)(AN AN,αN (s)).

To compute the right-hand side, we factor the right leg of the cospan
idAN Aeop = Aeop in (E ′,M′) as shown in the triangular diagram above,
obtaining Ae = m′e′; then, the function LanF ′(Aeop) takes the element

(AN AN,αN (s)) to

(AX
e′
−→ AN,F ′(m′op)αN (s))

as claimed.

34

	1 Introduction
	2 Background
	2.1 Cospan categories
	2.2 Frobenius monoids
	2.3 Hypergraph categories

	3 Decorating data
	3.1 Decorated cospans
	3.2 Decorated corelations
	3.3 The category of decorating data
	3.4 Decorating corelations is functorial

	4 The category CospanAlg
	4.1 The subcategory CospanAlg
	4.2 An explicit formula for Kan

	5 Deconstructing decorated corelations
	5.1 Decorating using cospan algebras
	5.2 Decorated corelations is Kan then

	6 All hypergraph categories are decorated corelation categories
	6.1 From hypergraph categories to cospan algebras
	6.2 Hyp is a coreflective subcategory of CospanAlg
	6.3 Recovering the hypergraph category up to isomorphism

	7 An application: reaction networks
	7.1 The black box functor for reaction networks
	7.2 The hypergraph category of semialgebraic relations
	7.3 A new viewpoint on the black box functor

	A The explicit computation of Kan

