
A TYPE THEORY FOR OPETOPES

PIERRE-LOUIS CURIEN, CDRIC HO THANH, AND SAMUEL MIMRAM

Introduction. Opetopes were originally introduced by Baez and Dolan in or-
der to formulate a definition of weak ω-categories [BD98]. Their name reflects

the fact that they encode the possible shapes for higher-dimensional opera-

tions: they are operation polytopes. They have been the subject of many
investigations in order to provide good working definitions of opetopes allow-

ing to explore their combinatorics [HMP00, Lei04]. One of the most commonly

used nowadays is the formulation based on polynomial functors and the corre-
sponding graphical representation using “zoom complexes” [KJBM10].

(1)

a b c d e
f g h i

(2)

a

b c d

e

f

g h

i

j k

⇓α ⇓β
⇓γ

(3)

a

b c d

e

f

g h

i
l
⇓δ

⇓ε

In order to grasp quickly the nature of opetopes,

consider a sequence of four composable arrows as
in figure (1). There are various ways we can com-

pose them. For instance, we can compose f with
g, as well as h with i, and then g ○ f with i ○ h.

Or we can compose f , g and h together all at once,

and then the result with i. These two schemes for
composing can respectively be pictured in (2) and

(3). From there, the general idea of getting “higher-

dimensional” is that we should take these compo-
sitions as “2-operations”, which can themselves be

composed. Opetopes describe all the ways in which these compositions can be

meaningfully specified, in arbitrary dimension. We can expect (and it is indeed
the case) that the combinatorics of these objects is not easy to describe.

(4) . .

(5) ◾

⧫

⧫

(6) {∗ ← ⧫

Constructing low dimensional opetopes. Opetopes are

defined by induction on their dimension, the base cases being
dimensions 0 and 1. The unique 0-opetope is written ⧫ and

called the point. The unique 1-opetope is written ◾, called the

arrow, and is graphically represented in (4). The arrow can be
seen as a 1-dimensional “operation”, taking a point as input,

and outputting another point, whence the tree representation

(5). Say that the unique input edge of that tree is ∗. Then the “source pasting
scheme” of ◾, i.e. the way its inputs are arranged, is completely described by

the expression (6). An expression of this form is called a preopetope. In the

case of ◾, those three representations are a bit trivial, but those approaches
will become of relevance in the higher dimensional cases.

(7)

.

. .

.

(8)

◾

◾

◾

⧫

⧫

⧫

⧫

∗

∗

∗

[]

[∗]

[∗∗]

(9)

⎧
⎪⎪
⎨
⎪⎪
⎩

[] ← ◾

[∗] ← ◾

[∗∗] ← ◾

(10)

⎧
⎪⎪
⎨
⎪⎪
⎩

[] ← {∗ ← ⧫

[∗] ← {∗ ← ⧫

[∗∗] ← {∗ ← ⧫

(11)

.

. .

.
⇓

(12)

3
◾

◾ ◾ ◾

[]
[∗]

[∗∗]
[]

Now, the arrow can be used to create “1-pasting
schemes”, i.e. meaningful compositions of cells whose

shapes are the arrow. An example of such a pasting

scheme is given in (7), and the corresponding compo-
sition tree is represented in (8). As previously men-

tioned, the input edge of each ◾ node is called ∗, and

so we can associate an address to every node in that
tree (in blue), which is a bracket-enclosed sequence
of names giving “walking instructions from the root

node”. Syntactically, this can be expressed by the
preopetope in (9), and since ◾ is encoded by the pre-

opetope {∗ ← ⧫ , this expression can be further ex-

panded as in (10).

Now, the pasting scheme (7) on the left can be
“filled” with a 2-cell representing its “compositor”, as

depicted in (11). This compositor, which we shall de-

note by 3, has three input cells, located at address [],
[∗], and [∗∗], and so we may represent it as a corolla
(12), i.e., a tree consisting of a unique node labeled

by 3, whose three input edges are named [], [∗], and
[∗∗], and labeled by the opetopes at those addresses,

in this case, ◾ for all three. Further, the output of 3
is the target in (11), i.e., an arrow, and thus the root
edge is labeled by ◾ as well. This process can be iterated by forming n-pasting

schemes, and filling them in order to obtain (n+ 1)-opetopes, that can in turn
by assembled into (n + 1)-pasting schemes. Figure (13) is an example of a 2-

pasting scheme, and its tree representation (the 2-opetopes 1 and 2 are defined

similarly to 3) is given in (14). As before, the pasting scheme can be expressed
as a preopetope (15), and fully expanded as in (16).

If n ≥ 2, the set Pn of n-preopetopes is no longer a singleton as in dimension

0 and 1. Consequently, edge labelings in (n+1)-pasting schemes are not trivial,
and dictate which opetope can be adjacent to which. Since preopetopes do not

keep track of edge labels, some of them describe pasting schemes that are not

“well-formed”, and thus do not correspond to an actual opetope. First, some

preopetopes do not even describe a tree: {[∗] ← {∗ ← ⧫ does not have a root

node (that would necessarily be located at address []). But, more importantly,
from dimension 3 and higher, some compatibility conditions have to be verified

when building pasting diagrams. For example, the corolla associated with (14)

has four inputs, one of them being decorated by 2.. When attaching another
corolla to that corolla at this particular input, we must make sure that the

target of the opetope decorating the node ot the attached corolla is 2.

(13)

.

. .

.

.

⇓ ⇓

⇓
⇓

(14)

3

12

1

◾

◾◾◾

◾◾◾

◾

[]

[[∗∗]][[∗]]

[[∗][]]

[∗∗]
[∗]

[]

[]
[]

[∗]

[]

(15)

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

[] ← 3
[[∗]] ← 2
[[∗][]] ← 1
[[∗∗]] ← 1

(16)

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

[] ←
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∗ ← {∗ ← ⧫
[∗] ← {∗ ← ⧫
[∗∗] ← {∗ ← ⧫

[[∗]] ← {[] ← {∗ ← ⧫
[∗] ← {∗ ← ⧫

[[∗][]] ← {[] ← {∗ ← ⧫
[[∗∗]] ← {[] ← {∗ ← ⧫

Syntax. The set An of addresses (or
more precisely, n-addresses) locating n-

opetopes in n-pasting schemes, is in-

ductively defined as follows: A0 =

{∗}, and An+1 is the set of finite

words over the alphabet An, written

with enclosing brackets. For exam-
ple, [[[∗∗][∗]] [] [[∗][]]] ∈ A3, while

the empty address [] is in An for all

n ≥ 1. The set Pn of n-preopetopes
is also defined inductively: P0 = {⧫},

and Pn+1 is the set of expression of

the form {

[p1] ← p1
⋮
[pk] ← pk

and {{q , where

[p1], . . . , [pk] ∈ An are distinct n-
addresses, p1, . . . ,pk ∈ Pn, and q ∈ Pn−1

if n ≥ 2. The expression {{q describes

an empty n-pasting scheme, i.e. a tree
with no nodes and a unique edge labeled

by the (n − 1)-preopetope q.

As previously mentioned, not all
preopetopes correspond to an opetope.

We shall present a derivation sys-

tem named Opt? that characterizes
opetopes among preopetopes as those

that are derivable. The inference rules

of the system essentially follow the construction procedure presented above:
rule point derives the 0-preopetope ⧫ with no prior assumption; rule degen

takes a n-preopetope q and constructs the empty pasting scheme {{q ; rule
shift takes a n-preopetope p and considers it as the unique cell of a n-pasting

scheme {[] ← p ; and finally, rule graft takes a (n+1)-preopetope r = {

[p1] ← p1
⋮
[pk] ← pk

as above, an n-address [pk+1], and a n-preopetope pk+1, and, extends r as the

pasting scheme {

[p1] ← p1
⋮
[pk+1] ← pk+1

obtained from r by adding the cell pk+1 at ad-

dress [pk+1], embodying the well-formedness property as side conditions.

Further developments. Higher addresses are an extremely convenient tool
when dealing with the combinatorics of opetopes. They allow for a succinct

and precise formalism of preopetopes, and are a cornerstone to the definition
of O, the category of opetopes, based on the intuition carried by the graphical
representations of pasting schemes. In the preprint [CHM18], we also present

another syntax for opetopes, using variables instead of higher addresses, and

a corresponding derivation system Opt!, is presented. The latter system is
more user-friendly and easy to read, but does not lend itself so nicely to a

mathematical treatment, especially when it come to organizing opetopes into
a category. The results developed in thhe latter approach have been submit-
ted elsewhere. Variations of systems Opt! and Opt?, designed for syntactical

representations of finite opetopic sets (finite presheaves over O), are also pre-
sented in [CHM18], and a Python implementation of all of them is available in

[Ho 18]. Together with an adequate formulation of opetopic higher categories,

it is our hope that this work will be used productively for mechanical proofs
of coherence in opetopic ω-categories or opetopic ω-groupoids.

References

[BD98] J.. Baez and J. Dolan. Higher-dimensional algebra. III. n-categories and the
algebra of opetopes. Advances in Mathematics, 135(2):145–206, 1998.

[CHM18] P.-L. Curien, C. Ho Thanh, and S. Mimram. Type theoretical approaches for
opetopes. In preparation, 2018.

[HMP00] C. Hermida, M. Makkai, and J. Power. On weak higher dimensional categories.
I. 1. Journal of Pure and Applied Algebra, 154(1-3):221–246, 2000. Category the-
ory and its applications (Montreal, QC, 1997).

[Ho 18] C. Ho Thanh. opetopy. https://github.com/altaris/opetopy, April 2018.
[KJBM10] J. Kock, A. Joyal, M. Batanin, and J.-F. Mascari. Polynomial functors and

opetopes. Advances in Mathematics, 224(6):2690–2737, 2010.
[Lei04] T. Leinster. Higher Operads, Higher Categories. Cambridge Univ. Press, 2004.

1

https://github.com/altaris/opetopy

	Further developments
	References

