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In this talk, we will apply the theory of tangent categories to study the tangent
structure of differentiable stacks. A stack is a (2,1)-sheaf on a site (X,J), using the
theory of locally presentable categories one may see this is equivalent to an internal
groupoid in Sh(X,J). A differentiable stack is certain kind of (2,1)-sheaf on the
category of smooth manifolds. The difficulty in defining a tangent bundle [1] for a
differentiable stack is similar to those that arise when defining the tangent bundle
in a smooth topos. When studying synthetic differential geometry [7], one restricts
their attention to sheaves which satisfy a microlinearity condition, we will apply
this technique to differentiable stacks. Following the work of Garner and Leung
[2, 3], one may regard a tangent category [4, 5] as a kind of E-enriched category
(where E is the category of microlinear presheaves on Weil algebras [6]). Then one
may replace a sheaf satisfying a microlinearity condition with an enriched sheaf. In
this talk we will extend this technique to stacks: we will consider a notion of strict
tangent (2,1)-category as a certain kind of Gpd(E)-enriched category. Then we may
lift a tangent category to a (2,1)-tangent category and consider Gpd(E)-presheaves.
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[5] Rosický, J. Abstract tangent functors. Diagrammes 12 (1984): JR1-JR11.
[6] Bertram, Wolfgang. Weil spaces and Weil-Lie groups. arXiv preprint arXiv:1402.2619 (2014).

[7] Kock, Anders. Synthetic differential geometry. Vol. 333. Cambridge University Press, 2006.

1


