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Abstract

We construct a Quillen model structure on the category of (small) bigroupoids
and pseudofunctors. We show that the inclusion of the category of (small) 2-
groupoids and 2-functors in the aforementioned category is the right adjoint
part of a Quillen equivalence, with respect to the model structure provided
by Moerdijk and Svensson (1993). To construct this equivalence, and in or-
der to keep certain calculations of manageable size, we prove a coherence
theorem for bigroupoids and a coherence theorem for pseudofunctors. These
coherence theorems may be of independent interest as well.
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1. Introduction

The purpose of this paper is to construct a model structure on the cat-
egory of (small) bigroupoids and pseudofunctors. In a nutshell, a model
structure provides an environment in which one can do abstract homotopy
theory. The notion was first introduced by Quillen in [13], but has been
further refined over the years. Standard references regarding the theory of
model structures are [4] and [3]. Some well known examples of categories
carrying a model structure are the category of topological spaces, the cate-
gory of simplicial sets and the category of (small) groupoids. The latter is
closely related to the main category of this paper. As the name suggests,
bigroupoids are a second order analog of groupoids. This analogy persists
in the model structure we present below, as it highly similar to the classical
model structure on the category of groupoids. The fact that the collection
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of 1- and 2-cells between two fixed O-cells in a bigroupoid form a groupoid
even allows us to use the model structure for groupoids to our advantage at
several points in the construction.

The model structure on bigroupoids we give here is not the first model
structure on a category whose objects are 2-categorical in nature. In [I1],
Moerdijk and Svensson give a model structure on the category of (small) 2-
groupoids and 2-functors, and in [6], Lack gives one on the category of (small)
2-categories and 2-functors. In [7] Lack corrects an error made in [6], while
also giving a model structure on the category of (small) bicategories and
strict homomorphisms. A bicategory is a weaker variant of a 2-category, in
the same way that a bigroupoid is a weaker variant of a 2-groupoid. So, we see
that model structures exist both on categories with weak and categories with
strict 2-categorical objects. However, a commonality of the aforementioned
categories is that all their morphisms are strict.

The morphisms of the category on which we build a model structure are
the pseudofunctors, which are not strict. Pseudofunctors are more general
and in many aspects, they are the more natural notion of morphism to use.
This is illustrated in Example 3.1 and Remark 4.4 of [6], where morphisms
that ‘should’ exist, only exist as a pseudofunctor, even if everything else is
strict. It is also reflected in the fact that the cofibrations in the model struc-
ture we give below allow a more straightforward description than those of
[11], [6] and [7], despite using ‘the same’ fibrations and weak equivalences.
Moreover, the constructions in this paper are elementary, in the sense that
no sophisticated machinery such as the small object argument or other trans-
finite constructions are used.

Weak morphisms are generally not as well-behaved as strict ones and
can be, for this and other reasons, more difficult to work with. For exam-
ple: although the category of 2-categories and 2-functors is complete and
cocomplete by standard arguments, this argument breaks down if one also
considers pseudofunctors. In fact, the category of 2-categories and pseud-
ofunctors is neither complete nor cocomplete [6]. A similar argument can
be made for pseudofunctors in the context of bigroupoids. However, prod-
ucts and coproducts can be computed in the naive way, even in the presence
of pseudofunctors, and in this paper we prove that certain pullbacks along
pseudofunctors exist as well.

In the process of constructing our model structure, we make use of two
coherence theorems, which are proven in their entirety in the appendix. The
classical way to understand a coherence theorem is the following, as formu-



lated by Mac Lane in [10]:

A coherence theorem asserts: “Every diagram commutes”; more
modestly, that every diagram of a certain class commutes.

Since Mac Lane proved the first coherence theorem — for monoidal categories
in his case — views have shifted on what is, or should be, considered a ‘co-
herence theorem’ [12], but for us the classical formulation remains the most
useful one. At several points in the proofs below, the coherence theorems
allow us to recognize that certain diagrams commute at a glance, trivializing
computations that would have been very messy and laborious otherwise. The
coherence theorems also enable us to construct a Quillen equivalence between
the category of (small) 2-groupoids and 2-functors, equipped with the model
structure provided in [II], and the the category of (small) bigroupoids and
pseudofunctors, equipped with the model structure provided in this paper.
The proofs of these coherence theorems draw heavily on [§] and [2], which
are in turn based on [14] and [5] respectively.

2. The category of bigroupoids
2.1. Bigroupoids

Before introducing bigroupoids, we will define a wider class of structures
which we imaginatively name incoherent bigroupoids. This weaker notion
ignores the usual coherence conditions and is exclusively used as a convenient
intermediary step in some of the constructions. Unless otherwise specified,
the structures in this paper are bigroupoids.

Definition 2.1. An incoherent bigroupoid B consists of the following data:

o A set By (with elements 0-cells A, B, ...)

e For every combination of O-cells A, B a groupoid B(A, B) (with objects
I-cells f,g,... and arrows 2-cells a, f3,. . .)

e For every combination of O-cells A, B, C' a functor

Capc:B(B,C) x B(A,B) — B(A,C)

(9, f)—gx*f
(8,0) — B*a



e For every 0-cell A a functor

Ua:1— B4, A)
o— 1y
ide |—>id1A

e For every combination of 0-cells A, B a functor

Lis: B(A, B) — B(B, A)
fr—f

ar— af
e For every combination of O-cells A, B, C, D a natural isomorphism

idxCa, B,c
e

B(C,D) x B(B,C) x B(A, B) B(C, D) x B(A,C)
CB'C’DXidl aA,B,CﬁD%? lCA’C’D

B(B, D) x B(A, B) s B(A, D)

Ca,B,D



e For every combination of 0-cells A, B natural isomorphisms

B(A,B) x 1

ideAl raB ~
=7
B(A, B) x B(A,A) ———— B(A, B)

Ca,A,B

1 x B(A, B)

UBXidl lA,B% ~
B(B,B) x B(A, B) —— B(A, B)

Ca,B,B
B(A, B) : y 1
<IA,B,id>l i lUA
B(B, 4) x B(A, B) —g——— B(4, 4)
B(A, B) — 48 g4 B) x B(B, A)

!J/ iA,B/r lCB’A’B

1 » B(B, B)

Up

Remark 2.2. The properties of the groupoids B(A, B) are referred to as
local properties. For example, if every B(A, B) is discrete, it is said that B
is locally discrete.

Definition 2.3. A bigroupoid B is an incoherent bigroupoid satisfying the
following extra conditions:

e For every combination

AL Yo p M E



of composable 1-cells, the following diagram commutes

((kh)g)f —=== (k(hg))f —=— k((hg)[)

aJ/ lid*a (1)

(kh)(gf) a » k(h(gf))

e For every combination
AL B4

of composable 1-cells, the following diagram commutes

(g1)f 2 > g(1f)
\ / )
rxid idxl1
qf
e For every 1-cell
AL B

the following diagram commutes

If —2 s (Fff —2— F(f*f)

IJ/ J/id*e (3>

[+ F f1

Remark 2.4. We will sometimes write — x — for the functor C4 g and
shorten g x f by gf, for 1-cells f and ¢g. The action of the functor — x — on
2-cells is sometimes referred to as horizontal composition, to distinguish it
from the ordinary composition of 2-cells as arrows in a category, which is in
turn referred to as wvertical composition and is usually denoted by — o —.

Definition 2.5. A strict bigroupoid or 2-groupoid is a bigroupoid in which
the natural isomorphisms a, 1, r, e and i are all identities.



2.2. Morphisms of bigroupoids

As in the previous section, we first introduce a weaker notion of morphism,
which ignores coherence conditions.

Definition 2.6. An incoherent morphism (F, ¢) from a (possibly incoherent)
bigroupoid B to a (possibly incoherent) bigroupoid 5’ consists of the following
data:

e A function
F BO — 86

For every combination of O-cells A, B in B a functor

Fap: B(A,B) —s B/(FA, FB)

For every combination of 0-cells A, B, C' in B a natural isomorphism

B(B,C) x B(A, B) — %7, B(A,C)
FB,CXFA,BJ/ ¢A’B’C/7 J/FA,C

B(FB,FC)x B(FA,FB) — B(FA, FC)

!
Cra,rB,Fc

For every 0-cell A in B a natural isomorphism
1 —4 4 B(A, A)

idl ¢A/7 lFA, A

1 — B(FA, FA)

U
UF‘A

For every combination of O-cells A, B in B a natural isomorphism

B(A,B) — % B(B, A)

Pa,
FA,Bl 4 3/7 lFB,A

B(FA,FB) —— B/(FB, FA)

FA,FB



Remark 2.7. The properties of the functors Fy p are referred to as local
properties. For example, if every Fy p is faithful, it is said that (F,¢) is
locally faithful. (This is similar to Remark [2.2])

Definition 2.8. A morphism (F, ¢) from a (possibly incoherent) bigroupoid
B to a (possibly incoherent) bigroupoid B’ is an incoherent morphism satis-
fying the following extra conditions:

e For every combination
A-Lp LoD
of composable 1-cells, the following diagram commutes

(Fhs Fg)« Ff 2% F(hxg)« Ff —2— F((h*g)*f)

l l (4)

Fhx (Fgx Ff) =52 Fhx F(gx f) ——= F(hx (9 [))

e For every 1-cell

S
-
s

—



the following diagrams commute

Ffslpa —20 0, prarl, — 2 F(f+14)

Ff > F'f

id

Ff > F'f

id

(Ff) s Ff 2% F(f*) % Ff —2— F(f* % f)

1ra >y F'14

1rp > FlB

Ff#(Ff) ——> Ff« F(f*) —— F(f*f*)
¢ ¢

Remark 2.9. These types of morphisms are sometimes referred to as pseud-
ofunctors or weak 2-functors, since they are not, in general, structure pre-
serving maps. A morphism (F, ¢) for which ¢ = id and which therefore does
preserves all structure (not just up to isomorphism) is called strict.

The composition of two (possibly incoherent) morphisms (F, ¢) : B — B’
and (G,v) : B — B" is given by

(G,y)o (F,¢)=(Go F,Gpo~F):B— B"



Here, G¢ o vF represents the pasting of diagrams, as in:

B(A, B) e B(B, A)
FA,B ¢A’B/7 FB,A

-

B(FA,FB) — T2 B(FB, FA)

YFA,FB
Gra,FB GFrB,FA

B"(GFA,GFB) —— B'(GFB,GFA)

Icra,crB
This operation is clearly associative with identity.

Remark 2.10. In many of the upcoming proofs, we need to make sep-
arate constructions concerning composition, inversion and identity respec-
tively. However, since these three types of constructions are usually highly
similar, we will generally only provide the one for composition. We will not
mention this omission in every individual proof.

Let us prove two useful lemmas which show that maps and structures can
‘inherit’ coherence properties to some extent.

Lemma 2.11. Let
(F9)
A——— B

(Gy)

C

be a commutative diagram of incoherent morphisms between (possibly inco-
herent) bigroupoids. If two of the following conditions are satisfied, then so
15 the third:

(1) The diagrams and (5) commute for vF.
(2) The diagrams and @ commute for ¢, after G is applied to them.
(3) The diagrams and (5) commute for 1.

10



Proof. We only consider a. The proofs for 1, r, e and i are similar. The
commutativity of the left inner rectangle, the right inner rectangle and the
perimeter of the following diagram correspond to condition (1), (2) and (3),
respectively.

nxid n
Goxid vF
~Fed ~NE T Ggwd) Go
a Ga GFa
idsy yF . G(id*¢) Go .

~yF

Since the other components of the diagram commute by naturality of v and
the fact that (G,v)o(F,¢) = (H,n), irrespective of the three conditions, this
proves the lemma. O

Corollary 2.12. Morphisms between bigroupoids are closed under composi-
tion, so the collection of bigroupoids forms a category.

Proof. This follows directly from (1) + (2) = (3) of Lemma [2.11] O

Lemma 2.13. Let (F,¢) : A — B be a morphism between incoherent
bigroupoids. Then the following are equivalent:

(1) The diagrams , (@ and (@ commute for 1-cells in the image of F.
(2) The diagrams , (@) and (@ commute, after ' is applied to them.

Proof. We only consider . The proofs for and are similar. The
commutativity of the innermost triangle and outermost triangle of following

11



diagram correspond to condition (1) and (2), respectively.

Y*(b) *id

a

> .
7

id*(m‘y

. —> .
Frsid Y 7 {d«Fl
F(rxid)  F(id*1)

K

Since the other components of the diagram commute by naturality of ¢ and
the fact that (F,¢) is a morphism, irrespective of the two conditions, this
proves the lemma. O]

3. Model structures

Since there exist multiple nonequivalent definitions in the literature of
what constitutes a model structure, we give a brief description of what we
consider to be a model structure here.

Definition 3.1. Let f and g be morphisms in a category C. If for every
commutative square

a diagonal arrow exists as indicated in the diagram, then we say that f has
the left lifting property with respect to g or, equivalently, that g has the right
lifting property with respect to f.

12



Definition 3.2. A weak factorization system on a category C is a pair (£, R)
of classes of morphisms in C such that

(1) any morphism in C can be factored as a morphism of £ followed by a
morphism of R, and

(2) L consists precisely of those morphisms having the left lifting property
with respect to every morphism in R, and symmetrically, R consists
precisely of those morphisms having the right lifting property with
respect to every morphism in L.

Definition 3.3. A model structure on a category M consists of three classes
F, C and W of morphisms in M, called fibrations, cofibrations and weak
equivalences respectively, such that

(1) W contains all isomorphisms and is closed under 2-out-of-3, meaning
that whenever the composition go f is defined and two of f, g and go f
lie in W, then so does the third, and

(2) both (C,FNW) and (CNW, F) are weak factorization systems on M.

Remark 3.4. The classes FNW and C N W are commonly called the trivial
fibrations and trivial cofibrations respectively.

We can now formulate the main theorem of this paper.

Theorem 3.5. The category of bigroupoids and pseudofunctors carries a
model structure, with fibrations, cofibrations and weak equivalences as given

in Definitions and (3.8 below.

Definition 3.6. A morphism F' : A — B is said to be a fibration if it
satisfies the following two conditions:

(1) For every 0-cell A" in A and every 1-cell b: B — F A" in B there exists
al-cella: A— A" in A such that FA = B and Fa = b.

(2) For every l-cell @’ : A — A’ in A and every 2-cell §: b — Fa' there
exists a 2-cell a: a — @’ in A such that Fla =b and Fa = .

Definition 3.7. A morphism F' : A — B is said to be a cofibration if it
satisfies the following two conditions:

(1) The function F': Ay — By is injective.

13



(2) For every combination of O-cells A, A" in A, the functor F4 4 : A(A, A") —
B(FA, FA) is injective on objects.

Definition 3.8. A morphism F' : A — B is said to be a weak equivalence
if it satisfies the following two conditions:

(1) For every 0-cell B in B there exists a 0-cell A" in A and a 1-cellb: B —
FA" in B.

(2) For every combination of O-cells A, A" in A, the functor Fiy 4 : A(A, A") —
B(FA,FA) is an equivalence of categories.

Remark 3.9. A morphism satisfying the conditions of Definition is also
known as a biequivalence. Notice that when a morphism F : A — B is in
class X (fibrations, cofibrations, or weak equivalences), then F' is locally in
class X of the canonical model structure on the category of groupoids. This
is precisely the second part of Definitions [3.6] and [3.8] Also note that
the trivial fibrations may be characterized as those weak equivalences that
are surjective on 0-cells and locally surjective on objects (1-cells).

Lemma 3.10.
(1) Ewvery isomorphism is a weak equivalence.
(2) The weak equivalences satisfy the 2-out-of-3 property.

(3) The fibrations, cofibrations and weak equivalences are closed under re-
tracts.

Proof. Straightforward. O

4. The cofibration - trivial fibration WFS
In this section, we aim to prove the following proposition.

Proposition 4.1. The cofibrations and trivial fibrations form a weak factor-
1zation system.

By the retract argument, it suffices to show that the cofibrations have
the left lifting property with respect to the trivial fibrations and that every
morphism factors as a cofibration followed by a trivial fibration.

14



4.1. Lifting property
Lemma 4.2. The cofibrations have the left lifting property with respect to
the trivial fibrations.

Proof. Given a commutative square
A (F,¢) B
21
<K,H>F(L’A/)/ l(cm (6)

s
s
s

D—mm €

in which K is a cofibration and G is a trivial fibration, we construct a diagonal
filler L, as indicated in the diagram.
Let L : Dy — By be a function which makes the diagram

Ay —E— By

.
HL //
Kl /// lG

Dy —— Cy

commute. Such a function exists because K : Ay — D, is injective and
G : By — (Cy is surjective.

Given a pair of O-cells D, D’ both in the image of K, say D = KA and
D' = KA, we define Lp p : D(D,D’) — B(LD, LD') by taking a diagonal

Fy oar
A(A, Ay —2% B(LD, LD')

-
ppr 7 G
KA,A' _-7 LD,LD’
///
P

-

D(D,D') — C(HD,HD')

HD,D’

which exists by the model structure on the category of groupoids. Given a
pair of 0-cells D, D’ not both in the image of K, we define Lp p/ : D(D, D) —
B(LD,LD") by taking a diagonal

0 ———— B(LD,LD)

-
! EILDvD/ /’//
: _-7 GLD,LD’
-
///

D(D,D') — C(HD,HD')

HD,D’

15



again using the model structure on the category of groupoids.
To finish the construction of (L, \), we use the local fully faithfulness of
G to define
A=G(no(vL)™).

The calculation
(G,7y)o (LX) =(GoL,GhoyL) = (GoL,GG ' (no(yL)")oyL) = (H,n)

demonstrates that the lower right triangle of @ commutes. To check that
the upper left triangle commutes as well, we use the fact that the square @
commutes to compute

Gop=HronK o(yF) ™' =GLko GG (nK o (yF)™') = G(Lk o AK),
giving the desired result
(F,¢) =(LoK,LkoAK) = (L,\) o (K, k),

by the local faithfulness of G.

Lastly, we show that (L, \) is a morphism by verifying that the coherence
diagrams and commute for A\. Since G locally is faithful, it suffices
to check that these diagrams commute after GG is applied to them. But this
follows directly from (1) + (3) = (2) of Lemma [2.11] O

4.2. Factorization

Lemma 4.3. Given a square of categories which commutes up to a natural
isomorphism o : FH — FK

A—EX B K
- F
H a P = A 3 B———C
7 N
B——r—C "

in which F is an equivalence of categories, there exists a unique natural
isomorphism 3 : H = K such that F'} = «.

16



Proof. By hypothesis, there exists a functor G : A — B and a natural
isomorphism 7 : id = GF. For every A in A, the square

HA — P2 L gA

must commute by naturality of 1. Since F/54 = a4 is required as well, this
leaves the composite

—1
o™ arg S8 grrg WO i

as the only possible candidate for 5. We see that the square

FHA — % s FKA

FnHAl lFWKA

FGFHA —— FGFKA
FGay

commutes by naturality of , as ay = FF'ay,. This shows that our defini-
tion of § indeed meets the requirement F5 = a. O

Lemma 4.4. Let (F,¢) : A — C be a morphism of bigroupoids. Then there
exists a factorization

A (G) B (H,m) C

of F, where G is a cofibration and H is a strict trivial fibration.

Proof. We define the 0-cells of B as the disjoint union of those of A and C,
so By = Ay + Cy. We let G : Ay — By be the inclusion map and we take
H = [F,ld] : BO —>C0.

To define the groupoids B(B, B'), we factorize each Fy 4 : A(A, A") —
C(FA,FA) as

GA A/ HA A/
A(A A"y —— B(A,A') —— C(FA,FA),

where G 4 4/ is a cofibration and Hy4 4 is a trivial fibration, using the model
structure on the category of groupoids. For pairs of 0-cells of B not of the

17



form (A, A’), we take (disjoint copies of) the groupoids in C corresponding
to their image under H:

B(A,B')=C(FA,B"), B(B,A")=C(B,FA), B(B,B)=C(B,B).

The functor Hg g : B(B, B') — C(H B, HB’) is simply the identity in these
last three cases.

We will now provide the functor Cg p pr : B(B',B") x B(B,B') —
B(B, B") for a given triple of 0-cells B, B', B”. Since Hp g : B(B,B") —
C(HB,HB") is a trivial fibration, it has a section Sg g+ : C(HB, HB") —
B(B,B"). We define Cp p g as the composite

HxH

B(B',B") x B(B,B) 2L¢(HB',HB") x C(HB, HB') -
C(HB,HB") -2 B(B, B").

Note that this makes the square

B(B',B") x B(B,B') ——<—— B(B,B")

C(HB',HB") x C(HB,HB') —— C(HB,HB")

commute, which allows us to define n = id.

Next, we define a = SaH. Since HSaH = aH and n = id, the diagram
commutes for . We use a similar definition for 1, r, e and i, so by the same
argument the diagrams (j5) commute as well, hence (H,7) is a morphism.

To show that B is a bigroupoid, we verify that the diagrams coherence
diagrams , and (3)) commute. Since H is locally faithful, these diagrams
commute if and only if they commute after H is applied to them. But this
follows directly from (1) = (2) of Lemma[2.13]

To define ~, consider the square
A(AA") x A(A, A —2C 5 B(GA,GA")
Co(GXG)l ¢°(”G)71/7 lH (7)

B(GA,GA") —————— C(FA, FA")

18



The calculation
HoCo(GxG) Y92 Co(Hx H)o(GXG) = Co(FxF) < FoC = HoGoC

shows that indeed commutes up to the natural isomorphism ¢ o (nG)~*.
Since H in is an equivalence of categories, Lemma provides us with a
natural isomorphism

Y(=7v44,47) : Co(GxG)= GoC

satisfying Hy = ¢ o (nG)~!. This means that we have indeed factored (F, ¢)
as (H,n) o (G,7).

To show that (G, ) is a morphism, we must verify that the cohernce dia-
grams and commute for v. Since H is locally faithful, these diagrams
commute if and only if they commute after H is applied to them. But this
follows directly from (1) 4 (3) => (2) of Lemma [2.11] O

5. The trivial cofibration - fibration WFS
The purpose of this section is to prove the following proposition.

Proposition 5.1. The trivial cofibrations and fibrations form a weak factor-
1zation system.

5.1. Lifting property
Lemma 5.2. Given a triangle of groupoids that commutes up to a natural
isomorphism 6 : H = GF

B

lG

C

and in which G is a fibration, there exists a functor F' making the triangle
commute, along with a natural isomorphism « : F' = F such that Ga = 3.

-

A 3

19



Proof. For every object A of A, there exists an object B4 of B and an arrow
ay By — FAsuch that GBy, = HA and Gay = B4, since G is a fibration.
Define F’A = By and F(f: A— A') =a;/ o Ff o ayu. O

Lemma 5.3. Given a square of categories which commutes up to a natural
isomorphism o : HG —= KG

G

A——— B K
o T
a oz K = A——— B 28! C
N~

H
B——sC

i which G is an equivalence of categories, there exists a unique natural

isomorphism 3 : H = K such that G = «.

Proof. By hypothesis, there exists a functor F' : B — A and a natural
isomorphism 7 : id = GF'. For every B in B, the square

HB — " kC

HﬁBl lKWB

HGFB —— KGFB
BaeFB

must commute by naturality of 5. Since Sgrp = app is required as well,
this leaves the composite

-1
o2 gar 2L gor £ i

as the only possible candidate for 5. We see that the square

HGA —22  « KGA

H??GAl lKnGA

HGFGA ——— KGFGA

OFGA

commutes by naturality of o, as Hnga = HGG 'nga and Kngsy = KGG 'nga.
This shows that our definition of f indeed meets the requirement G = . [

20



Lemma 5.4. In any diagram of categories

e
AT B e
\G/‘\K/‘

with natural transformations o, : H = K and a natural isomorphism
w: F'= G, the equality o F = BF holds if and only if the equality oG = G
holds.

Proof. This follows from the equations
KpoaF =aGoHyp and KpopBF =pGoHp
and the fact that u is invertible. O]

Corollary 5.5. Let (F,¢) : A — B be an incoherent morphism between
(possibly incoherent) bigroupoids. Suppose furthermore that for every pair of
O-cells A, A" of A, two endofunctors Gaar, Hyar = A(AA) — A(A, A)
are giwen which are naturally isomorphic piaa : Gaa = Haa. Then the
diagrams and (@ commute for ¢G if and only if they commute for ¢H.

Proof. This is a direct application of Lemma [5.4] O
Lemma 5.6. Given a commutative square

F?¢)

A (—> B
Pt
<K7E>F(L’f)/ l(cm (8)

in which K 1s a trivial cofibration which is surjective on 0-cells and G is a
fibration, there exists a diagonal filler L, as indicated in the diagram.

Proof. Let L : Dy — By to be the unique function that makes the diagram

AOL)BO

A
L 7

DO T>CO
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commute. This function exists because K : Ag — Dy is bijective.
Given two 0-cells D = KA and D' = KA' in D, we construct the functor

L(=Lpp):D(D,D)— B(LD,LD")
by taking a diagonal

A(A, A —E—— B(LD,LD')

D(D,D') ——— C(HD, HD')

which exists by the model structure on the category of groupoids.
To define A, consider the square

A(A A" x A(A, A —25 5 (D', D" x D(D, D')

KxKl (LH)_I% lLoC 9)
/ /A / "
D(D ,D ) X D(D,D) W} B(LA,LA )

The calculation

(Lr)~!

Co(LxL)o(KxK) = Co(FxF) =% FoC = LoKoC 2= LoCo(K x K)

shows that @ indeed commutes up to the natural isomorphism (Lx)~! o ¢.
Since K x K in @D is an equivalence of categories, Lemma provides us
with a natural isomorphism

/\(Z AD,D’,D”) :Co (L X L) = LoC

satisfying AK = (Lk)™! o ¢.
We make the necessary verifications. The left upper triangle of com-
mutes, since

(LN o (K, k) = (Lo K, Lo AK) = (F,¢),
as AK = (Lk)™! o ¢. We can also compute

(GAoyL)K = GAK oyLK = G((Lk) ' o¢)oyF = (Hk) ' oGpo~yF =K,
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using AK = (Lk)~!o¢ as well as the commutativity of the square (8)). Hence
(G,v)o(L,A)=(GoL,GAoyL) = (H,n)

by the uniqueness requirement of Lemma [5.3, so the lower right triangle of
commutes as well.

Lastly, we check that the coherence diagrams and commute for \.
Note that for each pair of 0-cells D, D’ of D, there exists a functor

TD,D’ : D(D, D,) — A(A, Al)
and a natural isomorphism
Qp p: id = KA,A’ o TD,D’>

as each K4 4 is an equivalence of categories. Since (L, \)o (K, k) = (F, ¢), it
follows that the diagrams (4)) and (5 commute for AK, by (2)+(3) = (1) of
Lemma[2.11] In particular, they commute for AK'T. But then they commute
for A by Corollary [5.5 O

Lemma 5.7. Given a commutative square

A
(K,id)f(L’A) l(G,id) (10)

s
s
-,
s
s

C/T>C

i which K is a strict trivial cofibration, which is also a local isomorphism
and G is a strict fibration, there exists a diagonal filler L, as indicated in the
diagram.

Proof. We build (L, \) in three stages, each time ‘correcting’ the previous
stage. The morphism (LM, A\(")) will make the upper-left triangle commute.
In addition to this, (L®, A?)) will make the diagram commute on the level
of O-cells. And finally (L® A®)) = (L, \) will make the entire diagram
commute.

Stage 1. We construct a left inverse (7,7) : C — A of K. Since K is a
trivial cofibration, there exists a function 7" : Cp — Ag such that TK = id
and for every O-cell C' of C, there exists a 1-cell po : C' — KTC. Whenever
KTC = C, we choose pc = 1¢. We define members Fe v of a Cy x Cp-indexed
family of functors by:
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Pc/*(**pé)

e C(C,C" C(KTC,KTC") , if at least one of C, C" does
not lie in the image of K;

e C(C,C"Y — 1 C(KTC,KTC") , if both C and €’ lie in the im-
age of K.

We take TC,C/ = K,;é T © PC,C”-
The natural isomorphism

T(=1c0cr) : Co(TxT)=ToC

is given by the diagram

c(c, "y x ¢(C, ) < s C(C,C")
PxP = P

C(KTC',KTC") x C(KTC,KTC") —S— C¢(KTC,KTC")  (11)

id
K- i1xK—1 1%7 K1

~ ~

A(TC', TC") x A(TC,TC") ——5—— A(TC,TC")

In , x(= X¢,r ) is the canonical isomorphism (see Definition .
The coherence diagrams and commute for 7 by Theorem m since
X is canonical and K is a strict local isomorphism. Define (LW A1) =
(F,¢)o(T, 7) and note that (L), \M)o(K,id) = (F, ¢), as (T, 7)o(K,id) = id
by construction.

Stage 2. Since G is a fibration, there exists a function L® : Cy — By
such that LOK = LWK, GL® = id and for every 0-cell C' of C, there exists
a 1-cell o : LDC — LW satisfying Gge = po. Whenever KTC = C, we
choose gc = 1,2 . We define members Q¢ ¢ of a Cy X Cp-indexed family of
functors by:

o B(LWC, LMCY der{rac) B(L®C, LA C") | if at least one of C, C"
does not lie in the image of K

o B(LWC,LOWC) — 4 B(L@C, LA | if both C and " lie in
the image of K.
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We take L(c%,)c' =Qccr 0 Lg)c,.
The natural isomorphism

AP (= )\(02’)0/70//) 1 Co (L@ x @)= L®oC

is given by the diagram

c(C',c")y x ¢(C,C") c > C(C,C")
L) s (D A(I)/V L

~ ~

B(LWC!', LOC") x B(LWC, LWy —E— B(LWe, LWery  (12)

QxQ T Q

2 v

B(LPIC', LPIC") x B(LP)C, LPC") —5— B(L®)C, LPC")

In (12), y(= yc.cv.c) is the canonical isomorphism. By Theoremapplied
to (LW, A1), the coherence diagrams (4) and (5) commute for A?). Note
that (L, \®)o(K,id) = (F, ¢), as (L¥, X))o (K, id) = (LM, \V)o (K, id)
by construction.

Stage 3. We now modify (L, A?)) to get the desired morphism (L, )).
On the level of 0-cells, we make no changes, meaning that L = L(® : ¢, —
By. The need to modify (L), \(?)) arises because the triangle

B(LC, LC")

=

c(c,c’) » C(C,C")

id

will in general only commute up to a canonical isomorphism z(= z¢ ).

Indeed, let us define members R¢ o of a Cy x Cp-indexed family of functors

by:

e C(KTC,KTC') Lert=re)
not lie in the image of K;

C(C,C") , if at least one of C', C’ does
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e C(KTC,KTC') —4— ¢(C,C") , if both C and C” lie in the im-
age of K.

Using the relations Gqc = pco, Gqor = per and the strictness of G, one easily
verifies

Grocr@c © Qoo = Reco o Groe pwer (14)
Then, with G and L(? as in ,

GoL®P =GoQolW=GoQoFoT=GoQoFoK 'oP, (15)

all by definition. Now using Go @ = Ro G (by (14)) and Go F = K (by
(10)), we find that is equal to

RoGoFoK 'oP=RoKoK 'oP=RoP

and clearly there exists a canonical isomorphism z : id = Ro P.
If both C' and C’ lie in the image of K, then z is the identity and we

define Lo cr = L(C)C, and ac o = id @ Loor = L(C)C, In all other cases we

apply Lemma- 5.2/ to obtam a functor Lo : C(C,C") — B(LC, LC") which
does make the triangle (13)) commute, together with a natural isomorphism

accer @ Lo = L(c2)C' satisfying Ga = z. We define \ as the natural
isomorphism

c(c',c" x c(C, ¢y —S—— c(c,c”)
@ .
L><L< L@ % 2 /\/f @ <°‘:>>L
B(LC", LC") x B(LC, LC") —5— B(LC, LC")
Note that that this choice of (L,\) gives (L,\) o (K,id) = (L®,\?) o
(K,id) = (F, ¢) and also ensures that the lower right triangle of com-

mutes on the level of 0-, 1- and 2-cells.
To verify that the coherence diagram commutes for A\, consider the
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following diagram, whose perimeter is exactly :

. Axid .. A N
AN
(axa)*a a>!<a a/
N @i . + A ’/
a aJ JL(Q)a La
i@ f A@ 7
ax(akar) axo \ a \
~ / | 2
' idsA 7 A T

The innermost rectangle is simply diagram for A® | which commutes be-
cause (L(2), A2) is a morphism; the leftmost square commutes by naturality
of a; the rightmost square commutes by naturality of o and all other squares
in the diagram commute by definition of .

All that remains to show is that GA = id. Expand the definition of X to
get

C C
. % . . % .
A(2) 1
xt| AL L><L<a:><>a> A (O‘:> L
~ C ~ o C
B % . — . % .
axa| 9z G chl i lG’
C C
Since Ga = z, this is the same as
C
. % .
A(2)
~ ~ 1
al 2. - 5 lid (16)




Now consider the two cental squares of :

— —
(1) (1)
. —)C . L) % L A A L L x L) A A L
(2) ~N ~N ~N ~N
L) % 1,(2) A /( (2) . L} . . L} .
' C ' _ y _ Ad
— = QxQ A Q = axa| A G
. ~ C ~ ~N C ~N
axa| G . — .
~ ~ id W
o GxG A G RXR A R
T T

(17)
The first and second diagrams of are equal by definition of (L), \(?)).
In the third diagram, w is the canonical isomorphism. The bottom two
squares in the second diagram of and the bottom two squares in the
third diagram of both represent a canonical isomorphism, so they must
be equal. Using the definition of (L, A} and applying (G,id) o (F,¢) =
(K,id), we find that is equal to

pxp| A P —C .
L —C pxp| A P
K—IXK—l ld/( K71 . L} . . # .
—C K-1xk-1| A K1 pxp| A P
e (b% h _ \.r C \.r _ \.r C \‘r
L —C . Kxk| K RxR| A R
id ~ C ~ ~ ~
axGc| ‘A G — e
L —C . RxR| A R
RxR w/( R . T) .
T e
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We substitute back into to get

C

. % .

X C

PxP A P — .

% ~ ~ 1 o .

alze T Ty, = l 4 l

RxR| A R e

C
by Theorem [B.13] O

Lemma 5.8. The pullbacks of fibrations along any other morphism exist.
Furthermore, the resulting morphism can be taken strict.

Proof. Given two morphisms (F,¢) : B — C and (G,7) : D — C, with F’
a fibration, we construct a square

A%B

(Pr) l(m (19)
C

D—>

and demonstrate its universal property. The set of O-cells Ay, equipped with
functions R : Ag — By and P : Ay — Dy, is given by the pullback square
(of sets!)

A() L) BO
pl P
Dy —— C

To cut back clutter, we write PA =D, RA= B and FB=GD = C for Ain
Ay. Given a pair of O-cells A, A’ of A, the groupoid A(A, A"), equipped with
functors Pa a1 A(A, A") — D(D,D’) and Ry 4 : A(A,A") — B(B,B’) is

29



given by the pullback square (of groupoids!)

RA,A’

A(A, A B(B, B')

PA’A/‘[ lFB’B/

D(D, D) ——— C(C, (")

Gp,p

We will now provide the functor C4 4 a» : A(A", A”")x A(A, A') — A(A, A”)
for a given triple of O-cells A, A’, A”. Consider the following square:

__3H
AN g n Co(RxR) / \/)/1 /
A(A A" x A(A,A') ———— B(B',B") x B(B, B')
Co(PxP)J/ ¢R°(7P)_1/7 lp (20)
D(D,D") e » C(C,C")

The calculation
GoCo(PxP)2oCo(GxG)o(Px P)
—Co(FxF)o(RxR) Z& FoCo(RxR)

shows that indeed commutes up to the natural isomorphism ¢Ro(yP)™!.
By Lemma there exists a functor H (= Ha _as,a#) which makes the square
commute, along with a natural isomorphism

Oé(: OéA,A/7A//) :H=—Co (R X R)

(both indicated by dashed arrows), such that Foa = ¢R o (yP)~!. By the
universal property of A(A, A”), this commutative square gives rise to
the functor we are looking for

Canar = (Cp,prpr o (Paran X Paar), Haarar).

We finish the definition of (P, ) and (R, p) by setting

ﬂ—A,A/,A” = ld : CD,D’,D” O (PA’,A” X PA7A’) — PA,A" @) CA,A’,A"
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and
pA’AI’AN = O(ZIA, AV . CB,B’,B” o (RA’,A” X RA,A’) > RA7AN (@] CA,A/7AII,
The calculations

(F,¢)o(R,p) =(FoR,Fpo¢R) = (FoR,Fa'o¢R)
=(FoR,(¢Ro (yP)™")" 0 ¢R) = (F o R,P)
and
(G,y)o(P,m)=(GoP,GnoyP)=(GoP,yP)

show that commutes.
The definition of A is finished by letting

aA,A/,A”,A”’ . CA,A’,A”' (e} (CA/,A”,A/” X ld) e CA,A”,A”/ o (ld X CA,A/,A/”)

be the unique natural isomorphism such that for any combination

/ !’

AL>A, L)A” LA///
of composable 1-cells the diagrams

Tokid "

(Pa" x Pa') * Pa ——— P(a" xd') *x Pa ——— P((a" *d) * a)

|
I

al : Pa
I
\L

Pa" x (Pd' * Pa) ——— Pa" x P(a' xa) ———— P(a" % (a' x a))

and

(Ra” % Ra’) x Ra el R(a" xd') x Ra ———— R((a" xd’) * a)

|
I
al | Ra
I
\l/

Rad" % (Ra’ * Ra) —a Ra" x R(a' * a) ———— R(a" * (a' * a))

commute. (The dashed arrows mark the two projections of as a4 a7 a».) In
other words, we force the coherence diagram to commute.

To show that A is a bigroupoid, we must verify that the diagrams (1),
and (3)) commute in A. Since a diagram in .4 commutes if and only if the
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projections of this diagram under P and R commute in D and B respectively,
this follows from (1) = (2) of Lemma [2.13|
Lastly, we demonstrate that our square has the desired universal property:

It is not difficult to check that there exists a unique incoherent morphism
(L, A) : &€ — A satisfying

(S,0) = (P,m)o(L,\)=(PoL,P\xonlL)

and
(T',7) =(R,p)o(L,\) =(RoL,R\opL),
namely
L=(ST):& — A
Lew = (Spp.Tew): E(E,E') — A(LE,LE")
A= (oo (rL) 7o (pL) ).

To show that (L, \) is a morphism, we must verify that the diagrams (4]) and
commute for A\. Again, it suffices that the projections of these diagrams
under P and R commute in D and B. But this follows directly from (1) +

(3) = (2) of Lemma [2.11} O

Lemma 5.9.

(1) Fibrations are closed under composition.
(2) Ewvery isomorphism is a fibration.

(3) Fibrations are closed under pullback.

Proof. Straightforward. By (1) and (2), it suffices to check (3) for the
explicit construction made in Lemma |5.8| ]
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Lemma 5.10. Let (F,¢) : A — C be a trivial cofibration. Then there exists
a factorization

A (G) B (H,id) C

of F', where G is a trivial cofibration which is surjective on 0-cells and H is

a strict trivial cofibration which is also a local isomorphism.

Proof. Let B be the sub-bigroupoid of C consisting of the O-cells in the image
of F' with all 1- and 2-cells of C between them. One easily verifies that the
evident morphisms (G,7v) : A — B and (H,id) : B — C have the desired
properties. ]

Lemma 5.11. The trivial cofibrations have the left lifting property with re-
spect to the fibrations.

Proof. Let the lifting problem

A (F\9) B
1

(K’K)l e l(aw) (21)
D=y €

be given, in which K is a trivial cofibration and G is a fibration.
Consider the pullback &, of G along H, and apply its universal property
to obtain

(F,0)
(Kﬂ)l (G’,id)l l(em (22)
D = s D ) s C

Note that this pullback exists and yields a strict fibration G’ due to Lemma
and Lemma 5.9 The observation that a diagonal filler for the left square
in results in a filler for the original square establishes that we may
assume that is of the form

A_FD g
(Kﬁ)l l(cm) (23)
c———¢C
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Factorize (K, k) into (7,id) o (S, ), using Lemma|5.10, Substituting this
into yields the square

(F\o)

(S,0) AL, A) 7 l(Gld
C

—>
(T,id)

l

for which the indicated lift L exists by virtue of Lemma [5.6, Lemma in
turn, provides a lift M for the square

— B

TldJ/ M“ 7 J/Gld)
C

C:

J

as shown. But then M is a diagonal filler for . O]

5.2. Factorization

Definition 5.12. A path object on a bigroupoid B is a factorisation of the
diagonal A : B — B x B as a weak equivalence R : B — PB followed by
a fibration (S,T) : PB — B x B.

The construction for path objects that we give below is basically the same
as the one given in [7] for bicategories.

Lemma 5.13. Every bigroupoid has a path object.

Proof. Let B be a bigroupoid. We construct a path object PB for B. By
virtue of Theorem [B.13| we allow ourselves to write as if B were a strict
bigroupoid. The set of O-cells of PB is the set of all 1-cells of B. Given a
pair of O-cellsa : A — A", b: B — B’ in PB, a l-cell a — b is a triple
(f,o,f),with f: A— B, f': A — B and ¢ : f'xa — bx f. We can
visualize such a 1-cell of PB as a square of 1-cells in B, which commutes up
to a 2-cell:



A 2-cell from (f, ¢, f') to (g,v,¢’) is a pair (a,a’) of 2-cells a : f — g,
o : f' — ¢’ in B, such that the diagram

fla —"— bf

a’*idJ/ J/id*oa

Ja — bg

commutes. One easily checks that PB(a,b), defined in this way, forms a
groupoid.
Next, we define the functor C,;. : PB(b,c) x PB(a,b) — PB(a,c).
Given two 1-cells (f, ¢, f') :a — b and (g,v¢,¢') : b —> ¢, we define
(9,0, 9) * (f. 0, 1) = (g* fhx o, 9" % [').

The composition 1 % ¢ makes sense, because we are willfully ignorant about
associativity issues. Given four 1-cells

<f17¢17 f{)? (f27 ¢27fé) ra— b and (glawlugi)v <g27¢27gé) tb—c
and 2-cells

(O./,O/) : (fhgblvf{) — (f2a¢27fé) and (B7ﬁ/> : (91,%51:/1) — (927¢27g;)

between them, we define

(8,67 * (, ) = (B xa, "% ).
The commutative diagram

idso 1 %id
g1 fia — g1bf1 — corfi

ﬁ’*a’*idl ﬁ’*id*al lid*ﬁ*a

92.f3a Tidedn | 950 f> T ianid g2 fa
confirms that (8 * a, 8’ % o) is in fact a 2-cell.

Next, for any four O-cells a : A — A, b: B — B, ¢: C — (',
d: D — D" in PB, we define the natural isomorphism a, 4. Given 1-cells
(f,o,f):a—0b,(g9,%,9"):b— cand (h,0,h) : c — d, we take

(a,b.c,d) (0.0 (009 (Fo6 7)) = ((BA,B,0,D) (g, f)s (@A, 5,010 ) (0 g7, 47)) -
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In order for this to be a genuine 2-cell, the diagram

(g fa 2225 d((hg) f)

a*idJ/ lid*a (24>

(W(g'1)a —ms db(g)))

must commute. Since we may calculate as if B were strict, we can remove
all brackets appearing in and set a = id, resulting in a square that
trivially commutes. The diagrams , and commute simply because
they commute componentwise, hence PB is a bigroupoid.

The diagonal A : B — B x B now factors trough PB as the strict
morphism R : B — PB, which

e sends a O-cell Atoly: A— A,

e sends a l-cell f: A — Bto (f,¢,f), with o : fxly — Ipxf
canonical

e and sends a 2-cell a: f — g to («, @),
followed by the strict morphism (S, T : B — PB, which
e sends a 0-cella: A — A’ to (A, A),
e sends a 1-cell (f,o, f') to (f, f)
e and sends a 2-cell (o, ) to (a, ).

We leave it to the reader to verify that R and (S,T') satisfy the necessary
conditions. ]

The following Lemma collects some miscellaneous results, to be used in
Lemma [5.15l

Lemma 5.14.
(1) Triwial fibrations are closed under pullback.

(2) For every bigroupoid B, the unique morphism B — 1 is a fibration.
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(3) Ewvery split monomorphism is a cofibration.

Proof. Straightforward. For (1), note that the trivial fibrations form the
right class of a weak factorization system. n

The following argument is originally due to Brown [I].

Lemma 5.15. Let (F,¢) : A — C be a morphism of bigroupoids. Then
there exists a factorization

A (G) B (Hm) C

of F, where G is a trivial cofibration and H is a fibration.

Proof. Since the unique morphism C — 1 is a fibration and fibrations are
closed under pullback, the two projections C x C — C are fibrations as well.
Since fibrations are closed under composition, it follows that S : PC — C
(we take R and (S,T) as in Definition is a fibration. We can therefore
take the pullback of S along F' and apply its universal property, as depicted
below

—2 s pc
s
—FC

Since S o R = id and R is a weak equivalence, 2-out-of-3 implies that S
is a weak equivalence and hence a trivial fibration. These are stable under
pullback, so P is a trivial fibration as well. The equality P o G = id then
shows that G is a weak equivalence, by 2-out-of-3. It also shows that G is a
split monomorphism and therefore a (trivial) cofibration. Defining H = To@)
yields a factorization ' = H o (G. The square

B—% ., pC



exhibits (P, H) as a pullback of the fibration (S, T"), which implies that H is
a fibration as well. ]

With this, Proposition [5.1] is proven, which also finishes the proof of
Theorem [B.5]

Remark 5.16. The only place where we seem to make essential use of the
fact that we are working with bigroupoids and not bicategories is Lemmal[5.7]
It is quite possible that this may be adapted somehow, resulting in a model
structure on the category of (small) bicategories and pseudofunctors.

6. The Quillen equivalence

We will use Theorems and to construct a Quillen equivalence
between the category of (small) bigroupoids and pseudofunctors, equipped
with the model structure of Theorem [.5 and the category of (small) 2-
groupoids and 2-functors, equipped with the model structure provided in
[T1]. For easy reference, we record the definition of fibrations used in [I1]
here.

Definition 6.1. A 2-functor F': A — B between 2-groupoids is said to be
a fibration if for every 1-cell @’ : A” — A” in A, and 1-cells b: B — FA”
and b/ : B — FA’, together with a 2-cell §: b — Fa” xb' in B, there exist
al-cellad : A— A and a 2-cell &« : a — a” xd’ such that Fa =b, F'a' =V
and Fa = .

Remark 6.2. It is an easy exercise to show that for a 2-functor F : A — B
between 2-groupoids Definitions [3.6] and [6.1] coincide. The weak equivalences
used in [I1] are also the same as those of Definition [3.8]

The underlying adjunction of the Quillen equivalence consists of the in-
clusion Z : 2 — Grpd — Bigrpd which is right adjoint to the strictification
functor S : Bigrpd — 2 — Grpd, given in Construction below. The con-
struction is similar to the one used in Lemma [B.2l We will suppress the
application of the inclusion functor Z.

Construction 6.3. Given a bigroupoid B, we construct a 2-groupoid SB
with biequivalences (E,¢) : SB — B and (S,0) : B — SB. We start by
constructing SB, along with (E,¢) : SB — B.
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The O-cells of SB are the same as those of B. The 1-cells of SB are
reduced strings consisting of 1-cells of B and formal inverses of these 1-cells,
with compatible sources and targets. Reduced means that a 1-cell f of B
and its formal inverse f never appear next to one another in such a string.
Furthermore, for every 0-cell A, there is an empty string () 4 associated to it.

Composing 1-cells is done by concatenating and subsequently deleting all
occurrences of the forms ff and ff, until the string is in reduced form. The
empty strings serve as identities. The operation —* is given on 1-cells by
simultaneously replacing every occurrence of the form f by f and vice versa,
and subsequently reversing the order of the string.

Before continuing with the definition of SB, we need to define part of
(E,e). On O-cells, E is the identity. On 1-cells, E evaluates the string,
associating to the left and taking formal inverses to (weak) inverses. For
example

E(khgf) = ((k* 1) x g*) * f.
Each empty string is taken to the appropriate identity 1-cell. For 1-cells

A5 B-5C,
of SB, the 2-cells
€: Evx Eu — E(v*u) and €: (Bu)" — E(u")
are defined to be the canonical ones. The 2-cell
€:1pa — Fly

is the identity.

The set of 2-cells © — v in SB is defined to be a copy of the set of 2-cells
Eu — FEwv in B. The vertical composition of 2-cells is borrowed from B as
well. On 2-cells, F is just the identity. In order to define a 2-cell « of SB, it
therefore suffices to provide Fa.

To define the horizontal composition of 2-cells, let u,uv’ : A — B and
v,v' : B — C be l-cells and let o : u — o/ and 8 : v — v be 2-cells of
SB. The composition (§ * « is given by requiring that the square

Evx BEu ——— E(v*u)

EB*EOCJ/ lE(B*a)

Ev' x Ev' ——— E(V' xu)
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commutes. The operation —* on 2-cells in B is defined analogously. Clearly
both — x — and —* are functors. Theorem can be used to verify that
SB is a 2-groupoid and that the coherence diagrams and (}5)) commute for
€. Clearly FE is surjective on O-cells, locally surjective on objects and locally
fully faithful, so it is a biequivalence.

The morphism (S, o) is the identity on 0-cells, sends a 1-cell to the string
with this 1-cell as only element, and is the identity on 2-cells as well. For the
composition of 1-cells

ALlsp 20
the 2-cell
o:S8gxSf— S(gx*f)

is defined by
Eoc=id: E(SgxSf) — ES(g* f).

For identities and inverses, o is defined in a similar way. It is not difficult to
check that (S, 0) is a morphism. By construction (E,€) o (S,0) =id, so S is
a biequivalence by 2-out-of-3.

We show that the asserted adjunction exists, with unit (S,0) : B — SB.

Lemma 6.4. Let (S,0) : B — SB be as in Construction [6.5. Then for
every morphism of bigroupoids (F,¢) : B — C, with C a 2-groupoid, there
exists a unique strict morphism (G,id) : SB — C such that (G,id)o(S,0) =
(F.).

Proof. Note that the 0- and 1-cells of SB just form the free groupoid on the
graph of 0- and 1-cells of B, so there is clearly a unique way to extend F' to
a strict morphism G : SB — C on the level of 0- and 1-cells.

Let u be a 1-cell of SB. By induction on its length, one easily verifies that
there is a 2-cell o, : u — SFEwu which is a finite (horizontal and vertical)
composition of 2-cells of the forms id and ¢. The requirement Go = ¢ then
also shows us what the value of Go, must be. Now, since Fo = id by
definition of o, we have Fo, = id as well, which implies that for any 2-cell
a :u — v, the square



commutes, since its image under £ commutes. This means that

Gu —5  Gu

GJUJ/ J/GJU

FEuF—Eoc> FFEv

must commute as well, completely determining the value of Ga. Theorem
applied to (F, ¢), can now be used to verify that G is a strict morphism.
]

Theorem 6.5. Consider the model structure of Theorem[3.5 on the category
Bigrpd, of (small) bigroupoids and pseudofunctors, and the model structure
of [11)] on the category 2 — Grpd, of (small) 2-groupoids and 2-functors. The
inclusion T : 2 — Grpd — Bigrpd is the right adjoint part of a Quillen
equivalence.

Proof. By Remark[6.2] the inclusion Z : 2 — Grpd — Bigrpd preserves fibra-
tions and trivial fibrations, and by Lemma [6.4] it has a left adjoint, S, so it
is the right part of a Quillen adjunction.

Since Z preserves fibrations, its left adjoint S preserves trivial cofibra-
tions. Moreover, every object of Bigrpd is cofibrant. By Lemma 1.1.12 of
[4] (Brown’s Lemma), this implies that S preserves weak equivalences. (The
sums in Bigrpd that are used in this Lemma, can be constructed in the naive
way.) Recall that (E,€) o (S,0) = id and note that whenever C is a 2-
groupoid, (E,€) : SIC — C is strict. This implies that (E,id) is the counit
of the adjunction. Since the unit (S,0) and the counit (£,id) are weak
equivalences, and since both Z and S preserve weak equivalences, the bijec-
tion 2 — Grpd(SB,C) = Bigrpd(B,ZC) induced by the adjunction preserves
weak equivalences in both directions, as desired. O

A. Coherence for AU-bigroupoids

In this section we prove a coherence theorem for ‘AU-bigroupoids’ (Def-
inition . This is an intermediate step in the proof a coherence theorem
for bigroupoids. Our approach closely follows that of [§], which is in turn
based on [14].
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Definition A.1. An associative unital bigroupoid or AU-bigroupoid is a bi-
groupoid in which the natural isomorphisms a, 1 and r are identities.

Remark A.2. Since identity 1-cells are strict in an AU-bigroupoid, the 2-
cellsa: f — gand axid : f*1 —> gx1 are identical. If it is not clear why
a certain diagram commutes, it may sometimes prove helpful to introduce
such a ‘missing’ 1.

The following Lemma is a result of the fact that in an adjoint equivalence,
the two triangle identities imply one another.

Lemma A.3. Let B be a AU-bigroupoid. Then for every 1-cell f of B the
following two diagrams commute

f = frf s
i J/id*e \ J/e*id (A1>
f f

Proof. Commutativity of the left triangle of (A.1)) is just the coherence re-
quirement . For the triangle on the right, consider the diagram

id=i

7

idsi id*i*idl \

frEfr A peppeppe drerd g g g

exid le*id

[ I [

The top left square of this diagram commutes, as both traversals give id xi*i
(using Remark ; its top right triangle commutes by the left triangle of
; and the bottom rectangle commutes by naturality of e. The com-
mutativity of the perimeter of this diagram implies that the composition
(e xid) o (id x i), of its bottom two components must be the identity. O

exid

The next Lemma is due to the fact that a conjugate pair of natural
transformations (i.e. a morphism of adjoints) is already uniquely determined
by one of its two components.
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Lemma A.4. Let o : f — g be a 2-cell in a AU-bigroupoid. Then the 2-cell
ot f* — g* is equal to the composite
« e lxid ideasid 4, py ddxi—1
fr =" q"9f y g f g
Proof. Consider the diagram

o e s e 2

a*l a* *idl a**a*idl lid

G = 9 g 99— I

exid
It is not difficult to see that the left and middle squares of this diagram com-
mute. Since its rightmost square commutes by naturality of e, the perimeter
of the diagram commutes as well. The Lemma now follows by noting that
the composition (e * id) o id o (id * i), of the top three components of the
perimeter is equal to the identity by Lemma [A.3] O

Definition A.5. Let B be a AU-bigroupoid. Then for every 1-cell f of B we
define the 2-cell

id*axid

uy : f** — f
to be the composite
ld* * *1d
fro ey prepep & f

Lemma A.6. Let B be a AU-bigroupoid. Then for every 1-cell f of B the
following two diagrams commute

1 e ! f**f* 1 i f*f**
\ Ju*id o1 lid*u
Ir f

Proof. We shall only concern ourselves with proving the commutativity of the
left triangle. The triangle on the right is susceptible to a similar approach.
Consider the diagram

1 e ! f**f*
 — Ly pp——
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The left square of this diagram commutes, as both traversals give e™! x i

(using Remark |A.2)). The triangle in the right half of the diagram commutes
by Lemma Since the composition, (id x e xid) o (e *id), of the bottom
two components of the diagram is by definition equal to u=! * id, we are
done. O

Lemma A.7. Let B be a AU-bigroupoid. Then for every 1-cell f of B the
following diagram commutes

f***f** wku f*f

wxid id*u

fr
which commutes by Lemma O

Lemma A.8. Let B be an AU-bigroupoid. Let A, B,C' and D be 0-cells and
let f: B — C be a I-cell of B. Then the functors fx — : B(A,B) —
B(A,C) and —x f : B(C, D) — B(B, D) are equivalences of categories, with
f**x— and — % f* as their respective pseudo inverses.

Proof. Trivial. O

Definition A.9. Let B be a AU-bigroupoid. Then for every pair of compos-
able 1-cells
AL B2
of B, we define
brg:(9f) — fg"
to be the unique 2-cell making the diagram

(9f) af —22% fg*gf

el lid*e*id
1

'S
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commute. The existence and uniqueness of such a 2-cell follows from Lemma

A8

Definition A.10. A graph G consists of a set (of nodes or 0-cells) Gy and
associates to every pair A, B € Gy a set G(A, B) (of edges or 1-cells). The
collection of graphs forms a category, with morphisms F' : G — G’ consisting
of a function F' : Gy — G| and functions Fu 5 : G(A, B) — G'(FA, FB)
for every pair A, B € G,.

Remark A.11. Note that every bigroupoid B has an underlying graph,
formed by its 0- and 1-cells. In fact, this gives rise to a forgetful functor from
bigroupoids to graphs, which has an associated free functor if we only consider
strict morphisms between bigroupoids. We will not introduce additional
notation for the forgetful functor, but instead trust that it will be clear from
the context whenever we regard a bigroupoid as a graph.

Lemma A.12. Given a graph G, the free AU-bigroupoid F,G on G ezists.
We record its universal property:

o There exists an inclusion of graphs (the unit of the adjunction), I, :

g — F.G, such that:

o Given a AU-bigroupoid B and a morphism F': G — B of graphs, there
exists a unique strict morphism of bigroupoids F' : F,G — B such that
F=FI,.

Construction A.13. We sketch a construction of F,G and leave it to the
reader to verify that this object has the required universal property.

The 0-cells of F,G are the nodes of G. For every node A of G, we add a
new edge 14 : A — A. We formally close the edges under the operations
—*x— and —*, taking into account the sources and targets in the obvious way.
We quotient out by the congruence relation generated by the requirements
that — % — is associative and 1 acts as identity. The 1-cells of F,G are the
equivalence classes under this quotient.

For every 1-cell f of FG, we create 2-cells ey, iy, e;l, i;l and idy. We
close the 2-cells under the operations — x —, —* and — o — (whenever these
operations make sense). We quotient out by the congruence relation gener-
ated by the requirements that — o — and — % — are associative; id acts as
identity; — ! acts as inverse; — * — and —* are functors; e and i are natu-
ral; and lastly that the coherence law holds. The 2-cells of F,G are the
equivalence classes under this quotient.

*
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In a group, we may write the element ((a=')~'b)~! more cleanly as b~ 'a~'.
We can do something similar by ‘rewriting’ the 1-cells of F,G into isomorphic,
but easier to handle 1-cells. This rewriting is done systematically by means
of a strict morphism of 2-categories, R.

Construction A.14. We construct a strict morphism of 2-categories R :
Fu.G — F,G which is the identity on 0-cells, along with a Gy x Gp-indexed
family of natural isomorphisms p : id = R (with pap : idap = Fap).

We let R be the identity on 0-cells. We inductively define the action of
R on 1-cells simultaneously with the components of p, making several case
distinctions. To make sure this procedure is well-defined, let us agree to
delete any superfluous occurrences of 1, not appearing as 1* in every 1-cell u
of F,G (e.g. if u=1"x(f*1)*, we write 1** % f* instead).

o If u is of the form f, f* or 1, with f in G, then Ru = u and p, is given
by
u —L5 4 = Ru.

e If u is of the form 1*, then R1* =1 and p, is given by
1" =1"%1-—"%1=RI1"
o [f v is of the form v**, then Rv** = Rv and p, is given by
v 25 v 2 Ry = Ru™.
o If u is of the form w * v, then R(w x v) = Rw * Rv and p, is given by
wx v L2 Ruw s« Ro = R(w * v).

Note that this is well-defined with respect to 1-cells of the form v *
Vg % - % Uy,

o If u is of the form (w*v)*, then R(w *v)* = Rv** Rw* and p, is given
by
(w*v)* Pyt L Ryt x Rut = R(w x v)*.
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We define R on a 2-cell a : u — v by requiring that the square

u —2" 5 Ru

UTRU

commutes. One easily verifies that R is a strict morphism of 2-categories.

Lemma A.15. The strict morphism of 2-categories R : F,G — FoG of
Construction enjoys the following properties:

(1) Ifu is a 1-cell of F,G, then Ru = u if and only if u is a composition of
1-cells of the form f, f* and 1, with f in G.

(2) Ifuis a 1-cell of FoG and Ru = u, then p : w — Ru is the identity.
(3) R is an idempotent biequivalence.

(4) All 2-cells of the form Ru and Rb are identities.

Proof. A straightforward check. O

Definition A.16. A 2-cell of F,G is called simple if it can be written as
idx ey *id, id *ip*id, id* e} *id or id *i;" *id, with f in G. Note that for
example ey and iy are included in this definition, using Remark [A.2]

Lemma A.17. For any I-cell u of F,G, the 2-cell Re, is the identity or can
be obtained by (vertically) composing finitely many simple 2-cells.

Proof. We use induction on the number of symbols in u, where we uphold
the convention on the appearances of 1, as in Construction [A.14] Recall that
Re, is defined by the commutative diagram

Pu* su

utxu —— Ru* * Ru

S

1

o If u= f, for some f of G, then py-., = id, so Re, = ey.
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o If u= f*, for some f* of G, then py+s, = uy *id. Comparing this with
Lemma yields Re, = i;l.

o If u =1, then p, s, = €1, so Re, = id.
o If u = 1% then py+s, = uy * €1, which means that the outer square of

wxid

1% 1" ——— 1% 1*
J/ i_l J/
e idxe
D —
1 7 1

commutes. By Lemma upper left triangle commutes as well, which
forces the commutativity of the lower right triangle. Comparing this

with Lemma yields Re, = id.

o If u = v**, then pyswy = Wy *x u,. Comparing this with Lemma [A.7]
yields Re, = e,, for which we may apply the induction hypothesis.

e If u = w x v, then by definition of b, ,,,
e, = e, o (id x e, xid) o (b, *id).

By strictness of R and part (4) of Lemma [A.15] the application of R
to both sides of this equation gives

Re, = Re, o (id * Re, *id),
which allows us to use the induction hypothesis.
o If u = (w=xw)*, then by naturality of e,
€, = €yrsyp+ O (b;;w * Dyaw),
which means that
Re, = Reyeyy © (Rb} , xid).
Now, by Lemma [A.4]
b}, = (id % i) 0 (id % by} % id) 0 (€yeyye * id),
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SO

Rb;, = (id * Rijpse)-) 0 (Reysspe *id),
Lastly, by Lemma [A.0],

giving

By combining the above computations, we obtain

Re, = Rey,- o (((id * Re,;

wW*v

) 0 (Reyryu * id)) * id).

We can now treat the occurrences of Re,«,+ as in the previous step,
after which we may apply the induction hypothesis.

]

Lemma A.18. Let u and v be 1-cells of F,G such that Ru = u and Rv = v.
Then any 2-cell o : uw — v is the identity or can be obtained by (vertically)
composing finitely many simple 2-cells.

Proof. Using Lemma [A.4] we start by systematically removing all occur-
rences of —* appearing in . We can subsequently replace every occurrence
of i by occurrences of e, using Lemma By Lemma [A.17] the 2-cell Ra

now has the required property. But o = Ra, as an immediate consequence

of Lemma (2). O

Definition A.19. Define the length of a 1-cell of F,G to be the number of
edges of G occurring in it, counted with multiplicity (e.g. length(f*(fx1)*) =
2).

Definition A.20. A 2-cell a : u — v of F,G is called a simple reduction
if it is simple and length(v) < length(u). We say that a 2-cell of F,G is a
reduction if it is an identity or it can be obtained by (vertically) composing
finitely many simple reductions.

The next Lemma shows that we are in a setting in which a ‘Diamond
Lemma’ can be applied. For us, 2-cells will take the place of the binary rela-
tion in terms of which the classical Diamond Lemma is usually formulated.
This does not create any difficulties and the proof will be essentially that of
the classical Lemma.
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Lemma A.21. Let u be a 1-cell of F,G. Then for any two simple reductions
a:u — v and o :

u — v, there exist reductions 5 : v — w and
B v — w completing the commutative ‘diamond’ below

Proof. The proof is just a matter of making a few case distinctions. In what
follows, x,y, z are arbitrary 1-cells of F,G and f, g are edges of G.

e If & = ¢/, then we can take § = ' =id.
o If

a=idxe;xid: zf" fyg 9z — 2yg*gz
and

o =idxe,xid : xf* fyg gz — xf* fyz,
then we can take

B =id*x e, xid : xyg gz — xY2

and
' =idxesxid: af* fyz — ayz.
o If
a=id*xe;xid:zff"fy — xfy
and

o/:id*i;l*id cxfff fy — xfy,
then we can take f = 8’ = id, by Lemma |A.3
o If

a=idxepxid:af" ff'y — xf*y
and

o :id>l<i]71 xid:of*ff'y — xf*y,
then we can take = ' = id, by Lemma
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All remaining cases are similar to one of the cases above. O

Definition A.22. A 1-cell u of F,G is minimal if there is no simple reduction
u — v, for any v.

Lemma A.23. Let a:u —> v and o : u — v be reductions in F,G. If v
and v' are both minimal, then v =v" and o = /.

Proof. We use induction on the length of w. If v = u or v/ = u, then u is
minimal and the assertion is true for trivial reasons, so suppose this is not
the case. Then we can factor factor a and o’ as

aq a9 0/1 /al2 /
U —> T —> v and U —r — v

respectively, where ay, ) are simple reductions and s, o) are reductions.
Lemma provides us with a commutative square of reductions

aq
—
e
—_—

B

B —— e

6/ y
and we may suppose that y is minimal, by reducing it if necessary. Now
length(x) < length(u), so y = v and 8 = ay by the induction hypothesis.
Applying this same reasoning to z’ yields y = v' and ' = o}, from which it
follows that v =" and o = «’'. O

Lemma A.24. Let u be a 1-cell of F,G such that Ru = u. Then there exists
at most one 2-cell v : u — 1.

Proof. In view of Lemma [A.23] it suffices to show that every a: u — 1 is
in fact a reduction. If a = id, there is nothing to prove, so suppose this is
not the case. Since R1 = 1, Lemma allows us to write o as a finite
composition of simple 2-cells. In other words, as a composition in which
every component is either a simple reduction or an inverse thereof. We use
induction on the length of this composition. If « is equal to

w0 251,

with aq a simple reduction, then we are done, for as is a reduction by the
induction hypothesis. If instead a;! is a simple reduction, let 3 : u — w
be any reduction with w minimal. Then w = 1 and S o a;' = ay by Lemma
A.23, so a = 8 and we are done as well. O
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Theorem A.25. If u,v : A — B are 1-cells of F,G, then there exists at
most one 2-cell u — v.

Proof. By Lemma[A.8] v* induces a bijection between the set of 2-cells u —
v and the set of 2-cells v* x u — 1, so we may assume that v = 1. Since R
is a biequivalence, there is a bijection between the set of 2-cells u — 1 and
the set of 2-cells Ru — 1. By idempotency of R, we are now reduced to a
situation where the conditions of Lemma [A.24] are satisfied. O

B. Coherence for bigroupoids

We will now combine the coherence theorem for AU-bigroupoids and the
coherence theorem for bicategories into a coherence theorem for bigroupoids
using techniques from [5] and [2]. Recall that one of the equivalent ways the
coherence theorem for bicategories can be expressed is the following.

Theorem B.1. In a bicategory B, every formal diagram commutes.

The notion of a formal diagram in a bicategory can be made precise in-
ductively or analogous to Definition but we will not further address
this here. Instead, we assume that the reader is familiar with Theorem
through other sources. A concise proof is given in [9] for example. In the up-
coming Lemma, we shall apply it to partially strictify arbitrary bigroupoids.
The Lemma is similar to Construction [6.3

Lemma B.2. Given a bigroupoid B, there exists a AU-bigroupoid SB with
biequivalences (E,¢) : SB — B and (S,0) : B — SB.

Proof. We start by constructing SB, along with (F ¢) : SB — B.
The 0-cells of SB are the same as those of B. The 1-cells of SB are
generated as follows:

o If fis a 1-cell of B, then the string f is a 1-cell of SB. For every 0-cell
A, there is an empty string () 4 associated to it.

e If u and v are 1-cells of SB with suitable source and target, then their
concatenation vu is also a 1-cell.

e If u is a 1-cell, then its formal inverse @ is a 1-cell as well.
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Composing 1-cells in SB is done by concatenating. The empty strings serve
as identities. The operation —* is given on 1-cells by taking formal inverses.

Before continuing with the definition of SB, we need to define part of
(E,e). On O-cells, E is the identity. On 1-cells, E evaluates the string,
associating to the left and taking formal inverses to (weak) inverses. For
example

E(khgf) = ((k* h*)  g)* % [.
Each empty string is taken to the appropriate identity 1-cell. For 1-cells

A B-—=C,

of 8B, the 2-cell
€: Evx Eu — E(v*u)

is defined to be the canonical one. The 2-cells
€:1lpa — Ely and €: (Fu)* — E(u")

are both identities.

The set of 2-cells © — v in SB is defined to be a copy of the set of 2-cells
Eu — FEwv in B. The vertical composition of 2-cells is borrowed from B as
well. On 2-cells, E is just the identity. In order to define a 2-cell « of SB, it
therefore suffices to provide Fa.

To define the horizontal composition of 2-cells, let u,u’ : A — B and
v,v' : B — C be l-cells and let o : u — v/ and 8 : v — v be 2-cells of
SB. The composition (§ * « is given by requiring that the square

Evx Bu ——— E(v*u)
Ev « Ev' ——— E(V' xu)

*

commutes. The operation —* on 2-cells in B is defined analogously, which
boils down to E(a*) = (E«)*, as € = id in this case. Clearly both — % — and
—* are functors. The 2-cell

e, uxu—1
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of SB is defined by
Fe, =eg, : Eu" x Eu — 1.

Similarly, i, is represented by ig, in B.

Theorem can be used to verify that SB is associative and unital
and that the coherence diagrams and commute for e. Clearly F is
surjective on 0-cells, locally surjective on objects and locally fully faithful, so
it is a biequivalence.

The morphism (5, o) is the identity on 0-cells, sends a 1-cell to the string
with this 1-cell as only element, and is the identity on 2-cells as well. For the
composition of 1-cells

ALsp 20
the 2-cell
o:S8gxSf— S(gx*f)
is defined by
Eo=id: E(Sgx Sf) — ES(g* f).

For identities and inverses, o is defined in a similar way. It is not difficult to
check that (S, ) is a morphism. By construction (E, €)oo (S,0) =id, so S is
a biequivalence by 2-out-of-3. m

Definition B.3. Let (F, ¢), (G,v) : A — B be morphisms of bigroupoids.
Assume that F' and G agree on 0-cells. Then an icon a : F = G consists
of natural isomorphisms

aap:Fap= Gap,
for every pair of O-cells A, B of B. Furthermore, for every combination
AL B4 ¢
of composable 1-cells of A, the following diagrams should commute

Fg«sFf —% 5 Flg«f)  lpa —2— Fl,  (Ff) —2— Py

S

(B.1)
Note that icons may be composed vertically and horizontally, by pointwise
composition of the natural isomorphisms.
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Lemma B.4. Let (F,¢),(G,7) : A — B be morphisms of bigroupoids and
let a : F = G be an icon. Then F is locally faithful (locally full) if and
only if G is locally faithful (locally full).

Proof. This follows from the fact that for every pair of O-cells A, B of A, the
functors Fy p and G 4 p are naturally isomorpic by oy p: Fap = Gap. O

We construct a bigroupoid that will act as a (weak) equalizer.

Construction B.5. Let (F, ¢), (G,~) : A — B be morphisms of bigroupoids.
We construct a bigroupoid Eq(F, G) with a strict morphism P : Eq(F, G) —
A and an icon ¢ : FP = GP.

The 0-cells of Eq(F, G) are those O-cells A € Ay satisfying FA = GA. The
objects of the groupoid Eq(F, G)(A, B) are pairs (f,a), with f: A — B a
l-cellin A and a: Ff — G f a 2-cell in B. A 2-cell from (f, ) to (g, ) is
a 2-cell 0 : f — ¢ in A such that the diagram

Ff —=— Gf

Fél lG’é (B2>

Fg ——— Gy

commutes.
Given two 1l-cells (f,a) : A — B and (g,5) : B — C, we define
composition by

(9.8) % (f,a) = (g* fyo(Bxa)od™),

identity by
1a=(1a,7097")
and inverses by
(f;a)" = (fyoa*og™).

On 2-cells of Eq(F,G), the operations — % — and —* are inherited from A4
and we leave it to the reader to check that the 2-cells of Eq(F, G) are closed
under these operations.

The isomorphisms a, r, 1, e and i are the same as those of A. We also
ask the reader to verify that these are in fact 2-cells of Eq(F,G), using
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and (5). The fact that the diagrams (I)), and commute in Eq(F, G)
follows directly from the fact that they commute in A.
We define the morphism P : Eq(F,G) — A by

PA:A7 PA,B(fJCO:f? PA,B(S:(S-

It should be clear that is a strict morphism of bigroupoids.
We define the component of the icon o : FP = GP at a 1-cell (f,«) :
A — B by
(0aB)(f) = Ff — GF.

The naturality of 04 g is immediate by (B.2)). The icon axioms (B.1|) follow
directly from the definition of composition, identity and inversion of 1-cells
in Eq(F, G).

Lemma B.6. Given a graph G, the free bigroupoid F,G on G exists. We
record its universal property:

o There exists an inclusion of graphs (the unit of the adjunction), I :
G — FuG, such that:

e Given a bigroupoid B and a morphism F' : G — B of graphs, there
exists a unique strict morphism of bigroupoids F : F,G — B such that
F =FI,.

Construction B.7. The construction of F,G is analogous to Construction
A 131

Lemma B.8. Let F' : F,G — B be a morphism out of a free bigroupoid.
Then there exists a strict morphism G : FG — B and an icon o : F' = G.
Furthermore, FI, = GI, : G — B and al, = id (as Gy X Go-indezed families
of isomorphisms).

Proof. By freeness of F,G, there exists a unique strict morphism G(= F[Jb) ;
FvG — B such that F'I, = GI, : G — B. (These and the other morphisms
are drawn in the diagram at the bottom of this proof.) The map I, now
factors through P : Eq(F,G) — F,G as PK, where K : G — Eq(F, G)

e sends a O-cell A to A,

e sends a 1-cell f to (f,idpy)
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e and sends a 2-cell 5 to .

The universal property of F,G applied to K, gives rise to unique strict mor-
phism K : F,G — Eq(F,G) satisfying KI, = K. Since PKI, = I, and PK
is strict, PK must be the identity, again by the universal property of F,G.
Recall that we have an icon o : FP = GP. The icon 0K therefore has
source FPK = F and target GPK = G, so take o = 0 K. One easily verifies
directly from the definitions of K and o that o K = id. We find

al, = oKI, = oK =id,

as desired.
P F
Eq(F,.G) ———— RG ——= B

K G
;{/
G
O

Lemma B.9. Given a graph G, the free 2-groupoid FsG on G exists. We
record its universal property:

o There exists an inclusion of graphs (the unit of the adjunction), I :
G — F.G, such that:

e Given a 2-groupoid B and a morphism F : G — B of graphs, there
exists a unique strict morphism of bigroupoids F': F.G — B such that
F=FI,.

Construction B.10. The construction of F,G is analogous to Construction

[A13l

Theorem B.11. For every graph G, the strict morphism I' : F/,G — F,G,
induced by the universal property of F,G in the diagram

g

[

Iy

fbg ________ ” fsg

s a biequivalence.
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Proof. 1t is clear that I' is surjective on 0-cells, since FG and F,G share the
same 0-cells (those of G). The fact that I is locally surjective follows from the
fact that I is locally surjective on the generating 1-cells (the 1-cells of G and
the new 1-cells of the form 14) and an easy induction on — % — and —*. The
local fullness of I' follows from the local discreteness of F,G, combined with
the observation that if v and v are 1-cells of F,G such that I'u = I'v, then
there must have been a 2-cell v — v in F,G. (This can be made rigorous by
comparing the generation of 2-cells in Construction with the generation
of the congruence relation for 1-cells in Construction [B.10])

It remains to show that I' is locally faithful. Let I'y and I'y be the strict
morphisms induced by the universal properties of F,G and F,G respectively,
in the diagrams

G G
P N
I, I,

FiG —-jo--> Fuf FoG - FG

Fl 1—‘2

Then by uniqueness of I', we obtain the factorization I' = I';I'y. Since I'y is
locally faithful as a trivial consequence of Theorem [A.25)] it suffices to show
that I'y is locally faithful.

Recall that by Lemmal[B.2there is a locally faithful morphism S : 7,G —
B into a AU-bigroupoid. By Lemma [B.8] there exists a strict morphism
T : 7§ — B along with an icon o : S = T. Note that the presence of
this icon guarantees that 7' is locally faithful as well, by virtue of Lemma
[B.4 We use the universal property of F,G to find a unique strict morphism
To.(=T1,) : FuG — B satistying T,1, = T'I,. This gives

Tarllb - Ta]a - TIb7

which implies T,I'y = T, by the universal property of F,G. But then I'y must
be locally faithful, as T is. O

Definition B.12. Given a bigroupoid B, we can construct the free bi-
groupoid F,B on its underlying graph and consider the obvious strict mor-
phism (the counit of the adjunction), .J, : 7,8 — B. A diagram (consisting
of 2-cells), in B is called a formal diagram if it is the image of a diagram in
FuBB, under Jy,. If such a formal diagram happens to consist of only a single
2-cell, we will call this 2-cell canonical.
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Theorem B.13. In a bigroupoid B, every formal diagram commutes.

Proof. Since FB is locally discrete and I' : F,B — F B is locally faithful
by Theorem every diagram of 2-cells commutes in F,8. Trivially, their
images under .JJ, commute as well. O

C. Coherence for morphisms

In this section we prove a coherence theorem for morphisms of bigroupoids.
The proof that we give below is essentially the one given in [2] for morphisms
of bicategories. The approach of [2] is in turn based on that of [5].

Lemma C.1. Given a morphism F : G — G’ of graphs, the free morphism
(of bigroupoids) F, F : FoG — FuG' on F exists. We record its universal
property:

o There ezists a commutative square (of graphs)

G —L ¢

such that:

e Given a commutative square (of graphs)

F g/

g
Rl .

with G : A — B a morphism of bigroupoids, there exists a unique
square (of bigroupoids)

FiG — FuG'

]

A — B
such that R = é[b and S = glm, with R and S strict.
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Construction C.2. We sketch the construction of F,,G’, from which it
should be clear how F,,F : F,G — F,,G" is defined. We leave it to the
reader to fill in the necessary details.

The 0-cells of F,,G" are the nodes of G'. For every node A of G’, we add
a new edge 14, : A — A and for every 1-cell f: B — C of FG, we add
a new edge F,F'f : FB — FC. We formally close the edges under the
operations — *x — and —*, taking into account the sources and targets in the
obvious way. We quotient out by the congruence relation generated by the
requirement that if edges f of G and g of G’ satisfy F'f = g, then F,,F'f ~ g.
The 1-cells of F,,G" are the equivalence classes under this quotient.

For 1-cells

A-Lp2 oD
of F,,G', we create 2-cells ay 4 ¢, 1, vy, €y, iy, a;’;f, 1;1, r;l, e;l, i;l and
ids. For 1-cells
AL B4

of G, we add 2-cells ¢g4r, ¢a, ¢y, ¢;}, ¢, and (b;l. We close the 2-
cells under the operations — x —, —* and — o — (whenever these operations
make sense). We quotient out by the congruence relation generated by the
requirements that —o— is associative; id acts as identity; — ! acts as inverse;
— % — and —* are functors; a, 1, r, e, i and ¢ are natural; the coherence laws
, , , and hold; and F,,F' is locally a functor. The 2-cells of
FmG' are the equivalence classes under this quotient.

Lemma C.3. Consider, fori = 1,2, the commutative squares (of graphs)

G —S—g

l l (c.)

A—Fp— B
with (F;, ¢;) + A — B morphisms of bigroupoids. Let
FG —2C s Fo G
i)
A——F— B
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be the squares induced by the universal property of F,,G. (Note that in general
the S; are distinct, since they depend on the F;.) Assume that Fy and Fy agree
on O-cells. Then if o : Fy = F5 is an icon such that

aR =id (C.2)

as Gy X Go-indexed families of isomorphisms, there is an icon [ : S; = S,
such that B
aR = BF,,G

as 1cons.

Proof. We construct a new bigroupoid B! out of B. The 0-cells of B! are the
same as those of B. A 1-cell in B!, from A to B, is a 2-cell v : g — g2 in B
with g1, 92 : A — B. For convenience, we make the domain and codomain
explicit in our notation (g, g2,7) for such a l-cell. A 2-cell in B!, from
(91, 92,7) to (hi, ho,0), is a pair (o7, 09) of 2-cells in B such that the square

g ——— I

92T>h2

commutes. Composition of 2-cells is done pointwise.

The identity 1-cell on a 0-cell A is given by id;,. The operations — * —
and —* on 1-cells of B! are given by these same operations in B (but as 2-cells
there). The operations — * — and —* on 2-cells of B! are also the same as in
B (pointwise). The 2-cells a are taken from B, as in the commutative square

(klhl)gl — kl(h1g1)

(5*6)*7‘[ le*(é*y)

(k2h2)ga ——5— ka(hago)

Similar commutative squares exist for 1, r, e and i. Commutativity of ,
and in B! follows directly from their commutativity in B.

Note that there are two strict morphisms of bigroupoids P; : B! — B,
for i = 1,2, which
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e send a O-cell A to A,
e send a 1-cell (g1, g2,7) to g;
e and send a 2-cell (0, 09) to oy,

together with an icon 7 : P, = P», whose component at a 1-cell (g1, g2,7) :
A — B is given by

(WAvB)(gl,QQKY) =791 — G2

The icon axioms (B.1]) are easily seen to hold.
The icon « : F; = F; induces a morphism of bigroupoids (F, ¢) : A —
B!, which

sends a 0-cell A to F1 A (which is the same as FyA),

sends a 1-cell f: A — B to (wap)s,

sends a 2-cell o to (Fio, Fyo)

and has ¢ = (¢1, ¢2).

The fact that the ¢ are legitimate 2-cells follows from the icon axioms ([B.1J).
Commutativity of ([4]) and (b)) for ¢ follows from the fact that these diagrams
commute for ¢; and ¢s.

There is also an obvious morphisms of graphs 7' : G/ — B, induced

by S. This gives a square, which commutes by (C.1]) and (C.2)) and which
produces a second square

G—C¢ g FiG — FuG'
RJ/ lT ey El lf
A ——— B A ——7F— B
via the universal property of F,,,G. It is clear that P, F' = F}, so
PTF.G=PFFR=FR,

which implies that Pif = §z by the universal property of F,,G. This allows

us to define o B
B=7T:5 = S,.
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One easily verifies that 7F = «a, by definition of 7 and F', which shows that
BFnG = nTFnG=nFR=aR,
as needed. O

Theorem C.4. For every morphism of graphs F : G — G', the strict
morphism A : F,,G' — F.G' induced by the universal property of F,,F in
the diagram

18 a biequivalence.

Proof. Surjectivity on 0-cells, local surjectivity and local fullness for A can
be proven in the same way as was done for I in the proof of Theorem [B.11]
All that is left to show is that A is locally faithful.

By Lemma [B.8] there exists a strict morphism S : F,G — F,,G" along
with an icon « : F,,F' = 9, such that Sol, = F,,F ol, and al, = id. Since
Sol,=F,F ol, we have two commutative squares

g — Lt g g — Lt g
T
fbngmgl ]:bgT)]:mg/

The equality af = id shows that we may apply Lemma to find an icon
[ :id = FE, where E is produced by the universal property of F,, F via

G —"—¢ Fig —" FuG'
Ibl llm IS idl lE
Fbgﬁfmg/ beT}—mg'
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Since the identity morphism is locally fully faithful, so is E by Lemma [B.4]
Now the universal property of F,,F induces a square

G —" ¢ FiG —T Fod'
IbJ/ lfé EE idl lAl
fbgT}"{,Q’ fbngbg’

Consider I : F,G' — F,G'. We claim that IV o A; = A. First note that
NoFFoly=T"olJoF =10 F =F,Fol,=F,Folol,

since [, and I; are components of the unit for F3; by definition of I"; since
I, and I. are components of the unit for Fg; and by definition of I'. The
universal property of F,G now dictates that IV o F, F' = F,F o I" and thus

I"oAyoFnF =T 0 F,F = F,Fol. (C.3)

Moreover,

IMoAjol,=T1"ol, =1 (C4)
by definition of A; and IV. But now equations and combined
imply [ o A; = A, using the universal property of F,,F’. The upshot of
this is that for A to be locally faithful, it suffices that A; is, as I is locally
faithful by Theorem [B

Let I, : F,G' — ]—"mg/ be the unique strict morphism such that I,
I, mI;, given by the universal property of F,G’. We claim that E = ] o Al
This will finish the proof, because we have established that E is locally
faithful. Note that

I obeo[b—[ oljoF=1I,0F =F,Fol,=801,

since I, and I; are components of the unit for 7; by definition of fm; by
definition of F,,F’; and by choice of S. Hence I,,, o F, F' = S by the universal
property of F,G and thus

Imo Ay o FF =1, 0F,F=25. (C.5)

Moreover, N _
In,oAjol,=1I,0l =1, (C.6)
by definition of A; and fm. Equations 1} and |D combined imply
E =1, 0 Ay, using the universal property of F,, F. ]
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Definition C.5. Given a morphism of bigroupoids (F,¢) : A — B, we
can construct the free morphism F,,F : F,, A — F,,B on the underlying
morphism of graphs and consider the obvious strict morphism (a component
of the counit of the adjunction), J,, : F,,B — B. A diagram (consisting of
2-cells), in B is called a formal ¢-diagram if it is the image of a diagram in
F.BB, under J,,.

Theorem C.6. Let (F,¢) : A — B be a morphism of bigroupoids. Then
every formal ¢-diagram commutes in B.

Proof. Since F B is locally discrete and A : F,,B — F,B is locally faithful
by Theorem [C.4] every diagram of 2-cells commutes in F,,B. Trivially, their
images under J, commute as well. O

Remark C.7. Theorems [B.11] and are formulated in terms of free bi-
groupoids on a graph. It is possible to make an analogous (stronger) state-
ment involving free bigroupoids on a groupoid enriched graph. This is similar
to what is done in [5] for monoidal categories and in [2] for bicategories. We
chose the former version, since it is sufficient for our purposes. However,
the latter version is valid as well and can be proven without too much extra
effort. One can take roughly the same route as we took in sections |B| and
but work with groupoid enriched graphs instead of (unenriched) graphs.
There is one slight hiccup. In the proof of Theorem [B.11] we have made use
of Theorem [A.25], whose analogous statement for groupoid enriched graphs
is false. However, in the new version of Theorem factoring I" into [’
can be avoided by using Construction (which is dependent on the old
Theorem [B.11)) to show that I" is locally faithful directly, in the same way
that we previously used Lemma to show that I'y is locally faithful. This
circumvents the use of Theorem [A.25] The rest of the structure of the proof
stays the same. For the individual Lemmas, it will be useful to refer to [2]
as well, as some details involving 2-cells have been lost due to simplifications
we could make by working with graphs instead of groupoid enriched graphs.
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