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Abelian categories are “good places to do computation,” e.g. homological alge-
bra. The category of (finitely generated) abelian groups, of vector spaces, and of
chain complexes are examples. The definition of abelian category is:

(*) a category with a zero object, finite products and coproducts, a kernel and
cokernel for every morphism, and with the property that each monic is a
kernel and each epic is a cokernel.

From these simple axioms follow many interesting consequences: each abelian cate-
gory A has all finite limits and colimits, its finite products and coproducts coincide,
its opposite is abelian, and—most interesting for this talk—it is a regular category.

The fact that each abelian category A is regular implies that it has a “nice”
theory of relations, a monoidal 2-category A, whose monoidal structure is inherited
from A and from which A can be recovered as the category of left adjoints. The
relations in an abelian category can be considered as formulas for a kind of regular
logic called abelian logic, where roughly speaking, new formulas can be built from
old using existential quantification (∃), meet (∧), true, equals (=), join (∨), zero
(0), and sum (+). For example, if R(y, z) and S(z, z′) have type Y ×Z and Z ×Z
respectively, then ∃z. (R(y, z) ∧ S(z, z′) ∧ z + z = z′) ∨ (y = 0) has type Y × Z.

In this talk we will discuss a new presentation language—a syntax we call abelian
calculus—for abelian categories, that looks nothing like (*). Let Mat denote the cat-
egory of matrices with integer coefficients (the full subcategory of finitely-generated
abelian groups spanned by the free ones); it is a regular category. Let Mat denote
the monoidal 2-category of relations in Mat, and let Poset denote the monoidal
2-category of posets under Cartesian product, monotone maps, and natural trans-
formations. An abelian calculus with one type is a lax monoidal 2-functor

C : Mat→ Poset
such that each lax coherence map has both a left and a right adjoint. We abbreviate
the condition “C is a bi-adjoint lax monoidal 2-functor” as “C is bi-ajax.” An
abelian calculus is a generalization (T,C) of the above, where T is a set, MatT :=∐

T Mat is the T -indexed coproduct prop, and C : MatT → Poset is bi-ajax.
From any abelian category A, one obtains an abelian calculus Rel(A) as the

relations in A, i.e. take T := Ob(A) and C(t1, . . . , tn) := Sub(t1 × · · · × tn). Each
such poset is in fact a lattice, and its meet and join are roughly where the bi-
ajax condition arises. Conversely, given an abelian calculus (T,C), one can form
its syntactic category Syn(T,C) and prove that it is abelian. It is in this sense
that abelian calculi form a presentation language for abelian categories: there is an
adjunction

Syn : AbCalc � AbCat : Rel

which is an essential reflection in the sense that, for every abelian category A, the
functor Syn(Rel(A))→ A is an equivalence.
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It may at first be surprising that there is a connection between abelian categories
and functors from integer matrices to posets. But as functors C : Mat → Poset,
abelian calculi offer completely different sorts of “knobs to turn” for generaliza-
tion, e.g. replace Mat with matrices of natural numbers or replace Poset with Cat.
Another interesting feature is that Mat has a rich graphical language developed
by Zanasi, Sobociński, and others, for which C provides a semantic interpretation.
The formal terms ∃z.R(y, z) ∨ (y = 0) in the logical language discussed above can
be reinterpreted as graphical terms in a wiring diagram language.

We will discuss the above ideas and briefly consider homology in this context,
e.g. showing how the “connecting homomorphism” from the snake lemma looks as
a graphical term.


