INVOLUTIVE FACTORISATION SYSTEMS AND DOLD-KAN CORRESPONDENCES

CLEMENS BERGER

In the late 1950's Dold [3] and Kan [5] showed that a simplicial abelian group is completely determined by an associated chain complex and that this construction yields an equivalence of categories. This *Dold-Kan correspondence* is important in algebraic topology because it permits an explicit construction of topological spaces with prescribed homotopy groups (e.g. Eilenberg-MacLane spaces).

There have been several attempts to extend this kind of categorical equivalence to other contexts, most recently by Lack and Street [6]. We present here an approach based on the notion of *involutive factorisation system*, i.e. an orthogonal factorisation system $\mathcal{C} = (\mathcal{E}, \mathcal{M})$ equipped with a faithful, identity-on-objects functor $\mathcal{E}^{\text{op}} \to \mathcal{M} : e \mapsto e^*$ such that $ee^* = 1$ and three other axioms are satisfied.

We show that for each category \mathcal{C} equipped with such an involutive factorisation system $(\mathcal{E}, \mathcal{M}, (-)^*)$, there is an equivalence $[\mathcal{C}^{\text{op}}, \mathcal{A}] \simeq [\Xi(\mathcal{C})^{\text{op}}, \mathcal{A}]_*$ where \mathcal{A} is any idempotent-complete *additive* category, and $\Xi(\mathcal{C})$ is the locally pointed category of *essential* \mathcal{M} -maps. Since in the simplex category Δ the only essential \mathcal{M} -maps are the last face operators $\epsilon_n : [n-1] \to [n]$, we get ordinary chain complexes in \mathcal{A} on the right so that our equivalence specialises to Dold-Kan correspondence if $\mathcal{C} = \Delta$.

Our approach recovers several known equivalences, cf. [8, 4, 2]. An interesting *new* family is given by Joyal's cell categories Θ_n (cf. [1]) where our equivalence relates to *n*-th order Hochschild homology and E_n -homology (cf. [9, 7]).

This is joint work with Christophe Cazanave and Ingo Waschkies.

References

- C. Berger Iterated wreath product of the simplex category and iterated loop spaces, Adv. Math. 213 (2007), 230-270.
- [2] T. Church, J. S. Ellenberg and B. Farb FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), 1833–1910.
- [3] A. Dold Homology of symmetric products and other functors of complexes, Annals of Math. 68 (1958), 54–80.
- [4] J. Gutiérrez, A. Lukacs and I. Weiss Dold-Kan correspondence for dendroidal abelian groups, J. Pure Appl. Alg. 215 (2011), 1669–1687.
- [5] D. Kan Functors involving c.s.s complexes, Trans. Amer. Math. Soc. 87 (1958), 330–346.
- [6] S. Lack and R. Street Combinatorial categorical equivalences of Dold-Kan type, J. Pure Appl. Alg. 219 (2015), 4343–4367.
- [7] M. Livernet and B. Richter An interpretation of E_n-homology as functor homology, Math. Z. 269 (2011), 193–219.
- [8] T. Pirashvili Dold-Kan type theorem for Γ -groups, Math. Annalen 318 (2000), 277–298.
- [9] T. Pirashvili Hodge decomposition for higher order Hochschild homology, Ann. Scient. Ecole Norm. Sup. 33 (2000), 151–179.