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The effective topos Eff was introduced by Martin Hyland in [4] and proved to
be a very useful category where to test computational properties of constructive
theories, see [9]. In the talk we present a way to see Eff as part of a model of
Homotopy Type Theory [6].

The presentations of Eff as an exact completion and of its full subcategory
Asm on the assemblies as a regular completion in [2] suggested that the topos
might be obtained as a homotopy quotient of some appropriate category, see
also [7]. This is understood in a very rough sense, based on the construction of
the exact completion via the pseudo-equivalence relations of Aurelio Carboni as
in [1].

By considering the category of the pseudo-equivalence relations in Asm
(with graph homomorphisms), we can show that Eff is a full subcategory of the
homotopy quotient Ho(Kan([C°P, Asm])) of the category of Kan fibrant cubical
assemblies, see [3, 5].

In fact, we obtain this from the stronger result that the extensional realiz-
ability topos Ext of [8], into which Eff embeds fully, is a full subcategory of
Ho(Kan([C°P, Asm))).
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