
Submitted to:
QPL 2019 c© J. Collins & R. Duncan

Hopf-Frobenius algebras

Joseph Collins1 Ross Duncan1,2

joseph.collins@strath.ac.uk ross.duncan@strath.ac.uk
1Department of Computer and Information Sciences

University of Strathclyde
26 Richmond Street, Glasgow, United Kingdom

2Cambridge Quantum Computing Ltd
9a Bridge Street, Cambridge, United Kingdom

In the monoidal categories approach to quantum theory [1, 6] Hopf algebras [14] have a
central role in the formulation of complementary observables [5]. In this setting, a quantum
observable is represented as special commutative †-Frobenius algebra; a pair of such observables
are called strongly complementary if the algebra part of the first and the coalgebra part of the
second jointly form a Hopf algebra. In abstract form, this combination of structures has been
studied under the name “interacting Frobenius algebras” [8] where it is shown that relatively
weak commutation rules between the two Frobenius algebras produce the Hopf algebra structure.
From a different starting point Bonchi et al [3] showed that a distributive law between two Hopf
algebras yields a pair of Frobenius structures, an approach which has been generalised to provide
a model of Petri nets [2]. Given the similarity of the two structures it is appropriate to consider
both as exemplars of a common family of Hopf-Frobenius algebras.

In the above settings, the algebras considered are both commutative and cocommutative.
However more general Hopf algebras, perhaps not even symmetric, are a ubiquitous structure in
mathematical physics, finding application in gauge theory [12], condensed matter theory [13],
quantum field theory [4] and quantum gravity [11]. We take the first steps towards generalising
the concept of Hopf-Frobenius algebra to the non-commutative case, and opening the door to
applications of categorical quantum theory in other areas of physics.

Loosely speaking, a Hopf-Frobenius algebra consists of two monoids and two comonoids
such that one way of pairing a monoid with a comonoid gives two Frobenius algebras, and
the other pairing yields two Hopf algebras, with the additional condition that antipodes are
constructed from the Frobenius forms. Fundamental to the concept of a Hopf-Frobenius algebra
is a particular pair of morphisms called an integral and a cointegral. We show that when
these morphisms are ’compatible’ in a particular sense, they produce structure similar to a
Hopf-Frobenius algebra. It is from this that we produce necessary and sufficient conditions to
extend a Hopf algebra to a Hopf-Frobenius algebra in a symmetric monoidal category. It was
previously known that in FVectk, the category of finite dimensional vector spaces, every Hopf
algebra carries a Frobenius algebra on both its monoid [10] and its comonoid [7, 9]; in fact we
show that every Hopf algebra in FVectk is Hopf-Frobenius. We are therefore able to find many
examples of Hopf-Frobenius algebras that are not commutative or cocommutative. Finally, due
to the fact that every Frobenius algebra is self dual, in a compact closed category we may find a
natural isomorphism between the algebra and its dual. We use this isomorphism to construct a
Hopf algebra on H⊗H that is isomorphic to the Drinfeld double.
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