UNIVALENCE AND COMPLETENESS OF SEGAL OBJECTS

RAFFAEL STENZEL

In this talk, we make precise an analogy between univalence and completeness that has been subject to informal discussions in the research community. More precisely, we give a definition of univalence and a definition of Rezk-completeness for Segal objects X in a large class of type theoretic model categories M. The former is a straightforward generalization of univalence in the type theoretic fibration category C of fibrant objects in M as treated in [3]. The latter is a generalization of Rezk's original definition of completeness for Segal spaces. Both conditions share the heuristic purpose to contract a respective object of internal equivalences associated to X over the object X_0 of points, turning that object of internal equivalences into a path object for X_0 . A priori, these objects of internal equivalences do not necessarily coincide, so the goal of this talk is to show the following theorem.

Let X be a "sufficiently fibrant" Segal object in M. Then X is univalent if and only if its Reedy fibrant replacement RX is complete.

As a corollary we obtain that a fibration in C is univalent if and only if the Reedy fibrant replacement of its nerve in M is Rezk-complete (this comparison in fact is independent of its infinity-categorical version presented in [2]). This implies for instance that univalent completion of a Kan fibration as introduced in [1] is a special case of Rezk completion of its associated Segal space.

References

- [1] Van den Berg, Moerdijk Univalent Completion
- [2] Rasekh Complete Segal objects
- [3] Shulman Univalence for inverse diagrams and homotopy canonicity