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Fixpoint toposes

If F : E → E is any functor, we can look at its category Fix(F ) of fixpoints: objects

X ∈ E endowed with an isomorphism X ∼= FX. The first goal of this talk is to explain

that, if E is an topos and F is a pullback-preserving endofunctor which generates a

cofree comonad, then Fix(F ) is again a topos. The proof builds on the material of [1].

Specific examples of this construction include the well-known Jonsson–Tarski topos,

whose objects are sets endowed with an isomorphism X ∼= X × X; the generalised

Jonsson–Tarski toposes of Leinster [2]; and the Kennison topos, whose objects are sets

endowed with an isomorphism X ∼= X +X. The second goal of this talk is to explain

how such toposes give rise to objects of interest to algebraists, such as Cuntz–Kreiger

C∗-algebras [3], Leavitt path algebras [4], and their associated étale groupoids [5].
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