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Deterministic and nondeterministic processes

Category theory as a theory of processes

Processes can be deterministic or non-deterministic
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The Kleisli category associated to a monad is one way to distinguish
between two such kinds of morphisms.
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Deterministic and nondeterministic processes

Goal for non-commutative regular conditional probabilities

Our goal will be to formulate concepts in probability theory categorically.
This will enable us to abstract these concepts to contexts beyond their
initial domain. We will focus our attention on quantum probability.

standard probability theory

categorical probability theory

non-commutative probability theory
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Stochastic matrices Standard definitions

Stochastic maps: “if y then x” probabilistic statements

Let X and Y be finite sets. A stochastic map r : Y // X assigns a
probability measure on X to every point in Y . It is a function whose value
at a point “spreads out” over the codomain.

Y

•
y

X

ry

The value ry (x) of ry at x is denoted by rxy . Since ry is a probability
measure, rxy ≥ 0 for all x and y . Also,

∑
x∈X rxy = 1 for all y .
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Stochastic matrices Standard definitions

Stochastic maps from functions: “if x then y” statements

A function f : X → Y induces a stochastic map f : X // Y via

fyx := δyf (x)

X

•
x

Y

•
f (x)

fx

where δyy ′ is the Kronecker delta and equals 1 if and only if y = y ′ and is
zero otherwise.
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Stochastic matrices Standard definitions

Composing stochastic maps

The composition ν ◦ µ : X // Z of µ : X // Y followed by ν : Y // Z
is defined by matrix multiplication

(ν ◦ µ)zx :=
∑
y∈Y

νzyµyx .

This is completely intuitive! If we start at x and end at z , we have the
possibility of passing through any intermediate step y . These “paths” have
associated probabilities, which must be added.

X

•

•

•
x

Y

•
•

y

•
•
•

•

•
z

Z
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Stochastic matrices Standard definitions

Special case: probability measures

A probability measure µ on X can be viewed as a stochastic map
µ : {•} // X from a single element set.

Compare this to {•} → X ,
which picks out a single element of X .

If f : X → Y is a function, the composition f ◦ µ : {•} // Y is the
pushforward of µ along f .

If f : X // Y is a stochastic map, the composition f ◦µ : {•} // Y
is a generalization of the pushforward of a measure. The measure
f ◦ µ on Y is given by (f ◦ µ)(y) =

∑
x∈X fyxµ(x) for each y ∈ Y .
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Stochastic matrices The category of stochastic maps

Stochastic maps and their compositions form a category

Composition of stochastic maps is associative and the identity function on
any set acts as the identity morphism.

Thus, a commutative diagram of the form

{•}

X Y

µ

��

ν

��

f
//

says that µ is a probability measure on X and its pushforward to Y along
f is the probability measure ν.
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Classical disintegrations Classical disintegrations: intuition

A disintegration is a stochastic section

Let X and Y be finite sets equipped with probability measures. Gromov
pictures a measure-preserving function f : X → Y in terms of water
droplets. f combines the water droplets and their volume (probabilities)
add when they combine under f . A disintegration r : Y // X is a
measure-preserving stochastic section of f .

hi

X

Y

f
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Classical disintegrations Diagrammatic disintegrations

Disintegrations: diagrammatic definition

Definition

Let (X , µ) and (Y , ν) be probability
spaces and let f : X → Y be a
function such that the diagram on the
right commutes.

{•}

X Y

µ

��

ν

��

f
//

A disintegration of (f , µ, ν) is a stochastic map Y
r // X such that

{•}

X Y

µ

��

ν

��
r

oo

and

X

YY

r

ZZ
f

��

idY
oo

ν

the latter diagram signifying commutativity ν-a.e.

A disintegration is also called a regular conditional probability and an
optimal hypothesis.
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Classical disintegrations Classical disintegrations exist and are unique a.e.

Classical disintegrations exist and are unique a.e.

Classical disintegrations exist and are unique a.e. (almost everywhere).

That’s really all you need to know!
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Classical disintegrations Classical disintegrations exist and are unique a.e.

Application: Bayes’ theorem

Question: Where do disintegrations show up?

Answer: statistical inference!

Corollary (Bayes’ theorem)

Given {•} p // X
f // Y , there exists a Y

g // X such that

{•}

X Y

p

��

f ◦p

��
g

oo

and

{•}Y X

Y × Y X × XX × Y

p
//

f ◦p
oo

∆Y

��
∆X

��g×idY // idX×foo

=== .

Furthermore, for any other g ′ satisfying these two conditions, g ==f ◦ p g
′.
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Classical disintegrations Classical disintegrations exist and are unique a.e.

Application: Bayes’ theorem

Proof.

Take g to be the composition Y
h // X × Y

πX−−−→ X ,

where h is a
disintegration of

{•}

X × Y Y

X

X × X

f ◦p

��

p

��

∆X

��

idX×f
��

πY
//
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Quantum disintegrations Completely positive maps and ∗-homomorphisms

Objects: Finite-dimensional C ∗-algebras

Let Mn(C) denote the set of complex n × n matrices. It is an
example of a C ∗-algebra: we can add and multiply n× n matrices, the
operator norm gives a norm, and A∗ is the conjugate transpose of A.

Every finite-dimensional C ∗-algebra is (C ∗-algebraically isomorphic
to) a direct sum of matrix algebras.

In particular, CX , functions from a finite set X to C, is a
commutative C ∗-algebra (it is isomorphic to C⊕ · · · ⊕C). A basis for
this algebra as a vector space is {ex}x∈X defined by ex(x ′) := δxx ′ .
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Quantum disintegrations Completely positive maps and ∗-homomorphisms

Morphisms: ∗-homomorphisms and CPU maps

Every completely positive unital (CPU) map ϕ :Mm(C) //Mn(C)
preserves positivity of matrices and their tensor products with
finite-dimensional identities.

Every (unital) ∗-homomorphism F :Mn(C)→Mm(C) is of the form

F (A) = U

A 0
. . .

0 A

U∗,

where U is unitary. In particular m = np for some p ∈ N.
For every CPU map ω :Mn(C) // C (called a state), there exists a
unique n × n positive matrix ρ such that tr(ρ) = 1 and
tr(ρA) = ω(A) for all A ∈Mn(C). ρ is called a density matrix.

For every CPU map ω : CX // C (also called a state), there exists a
unique probability measure p : {•} // X such that
ω(ϕ) =

∑
x∈X pxϕ(x) for all ϕ ∈ CX . We write this state as 〈p, · 〉.
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Quantum disintegrations Completely positive maps and ∗-homomorphisms

From finite sets to finite-dimensional C ∗-algebras

There is a (contravariant) fully faithful functor from finite sets and
stochastic maps to finite-dimensional C ∗-algebras and CPU maps.

category theory
classical/

commutative
quantum/

noncommutative
physics/

interpretation

object
set

C∗-algebra
phase space
observables

→ morphism function ∗-homomorphism
deterministic

process

// morphism
stochastic

map
CPU map

non-deterministic
process

monoidal
product

cartesian
product ×

tensor
product ⊗

combining
systems

// to/from
monoidal unit

probability
measure

C∗-algebra state/
density matrix

physical state
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Quantum disintegrations Non-commutative disintegrations

Non-commutative disintegrations

Definition (P–Russo)

Let (A, ω) and (B, ξ) be C ∗-algebras
equipped with states. Let F : B → A
be a ∗-homomorphism such that the
diagram on the right commutes. C

A B

ω

��
ξ

��

Foo

A disintegration of ω over ξ consistent with F is a CPU map R : A // B
such that

C

A B

ω

��
ξ

��

R //

and

A

B B

F
��

R

BB
idB //

ξ

the latter diagram signifying commutativity ξ-a.e.
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Quantum disintegrations Existence and uniqueness

Existence and uniqueness of disintegrations

Surprising: existence is not guaranteed in the non-commutative setting!

Theorem (P–Russo)

Fix n, p ∈ N. Let

C

Mnp(C) Mn(C)

tr(ρ · )≡ω
��

ξ≡tr(σ · )
��

Foo

be a commutative diagram with F the ∗-homomorphism given by the
block diagonal inclusion F (A) = diag(A, . . . ,A). A disintegration of ω over
ξ consistent with F exists if and only if there exists a density matrix
τ ∈Mp(C) such that ρ = τ ⊗ σ.
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Quantum disintegrations Applications and Examples

Example 1: Einstein–Podolsky–Rosen

Theorem (P–Russo)

Let

ρ :=
1

2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 & σ :=
1

2

[
1 0
0 1

]
.

and let F :M2(C)→M4(C) be the diagonal map.

Then
tr(σA) = tr(ρF (A)) for all A but there does not exist a disintegration of ρ
over σ consistent with F .

Proof.

ρ is entangled (not separable) and therefore cannot be expressed as the
tensor product of any two 2× 2 density matrices.
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Quantum disintegrations Applications and Examples

Example 2: Diagonal density matrices

Theorem (P–Russo)

Fix p1, p2, p3, p4 ≥ 0 with p1 + p2 + p3 + p4 = 1, p1 + p3 > 0, and
p2 + p4 > 0. Let

ρ =


p1 0 0 0
0 p2 0 0
0 0 p3 0
0 0 0 p4

 & σ =

[
p1 + p3 0

0 p2 + p4

]

be density matrices and let F :M2(C)→M4(C) be the block diagonal
inclusion.

Then tr(σA) = tr(ρF (A)) for all A. Furthermore, there exists a
disintegration of ρ over σ consistent with F if and only if

p1p4 = p2p3.
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Quantum disintegrations Applications and Examples

Example 3: Measurement in quantum mechanics

Theorem (P–Russo)

Let A ∈Mm(C) be a self-adjoint matrix with spectrum σ(A),

let
F : Cσ(A) →Mm(C) be the unique ∗-homomorphism determined by

Cσ(A) F−→Mm(C)

eλ 7→ Pλ,

and let ω = tr(ρ · ) :Mm(C) // C be a state with 〈q, · 〉 := ω ◦ F the
induced state on Cσ(A). Then F has a disintegration if and only if

ρ =
∑

λ∈σ(A)

PλρPλ,

where the right-hand-side is called the Lüders projection of ρ with respect
to the measurement of A.
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to the measurement of A.

Arthur J. Parzygnat∗ & Benjamin P. Russo† (∗University of Connecticut †Farmingdale State College SUNY Category Theory 2019 Edinburgh, Scotland The University of Edinburgh)Non-commutative disintegrations and regular conditional probabilitiesJuly 9, 2019 28 / 30



Quantum disintegrations Applications and Examples

Example 4: A “no-go” theorem for pure to mixed states

There are no disintegrations for evolving pure states to mixed states (a
state is pure iff it is an extreme point of the convex set of states).

Theorem (P–Russo)

Given a commutative diagram

C

Mnp(C) Mn(C)

tr(ρ · )
��

tr(σ · )
��

Foo

of CPU maps with ρ pure, if a disintegration exists, then σ must
necessarily be pure as well.
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Quantum disintegrations Thank you

Thank you!

Thank you for your attention!
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