# Lax Gray tensor product for 2-quasi-categories

### Yuki Maehara

Macquarie University

CT 2019

Yuki Maehara Lax Gray tensor product for 2-quasi-categories

# Lax Gray tensor product of 2-categories

 $\rightarrow$ 

In lax Gray tensor product  $\mathscr{A} \boxtimes \mathscr{B}$ ,

$$\left. \begin{array}{c} x & \xrightarrow{f} x' \text{ in } \mathscr{A} \\ \\ y & \xrightarrow{g} y' \text{ in } \mathscr{B} \end{array} \right\}$$

$$\begin{array}{c} (x,y) \xrightarrow{(f,y)} (x',y) \\ (x,g) \downarrow \qquad \qquad \downarrow (x',g) \\ (x,y') \xrightarrow{(f,y')} (x',y') \end{array}$$

does not commute strictly

# Lax Gray tensor product of 2-categories

In lax Gray tensor product  $\mathscr{A} \boxtimes \mathscr{B}$ ,



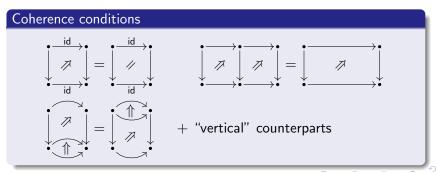
does not commute strictly, but admits a comparison 2-cell.

# Lax Gray tensor product of 2-categories

In lax Gray tensor product  $\mathscr{A} \boxtimes \mathscr{B}$ ,



does not commute strictly, but admits a comparison 2-cell.



 $\Delta$  consists of free categories [n]:

$$0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow n$$

> < 프 > < 프</p>

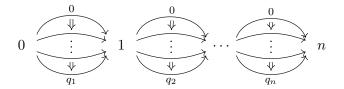
P.

æ

 $\Delta$  consists of free categories [n]:

$$0 \longrightarrow 1 \longrightarrow \cdots \longrightarrow n$$

 $\Theta_2$  consists of free 2-categories  $[n; q_1, \ldots, q_n]$ :



### Definition

A 2-quasi-category is a fibrant object in  $\widehat{\Theta_2} = [\Theta_2^{op}, \mathbf{Set}]$  wrt Ara's model structure.

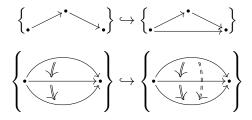
∃ ▶ ∢

### Definition

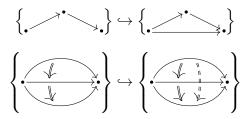
A 2-quasi-category is a fibrant object in  $\widehat{\Theta_2} = [\Theta_2^{op}, \mathbf{Set}]$  wrt Ara's model structure.

#### Theorem

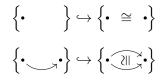
2-quasi-categories and fibrations into them can be characterised by RLP wrt inner horn inclusions and equivalence extensions (introduced by Oury).

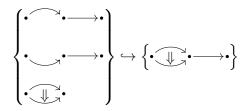


3) 3

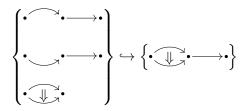


Equivalence extensions look like:

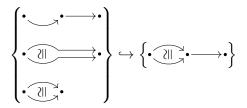




포 씨는 포



Equivalence extensions look like:



### Definition

We define the lax Gray tensor product of  $\Theta_2$ -sets by extending

$$\Theta_2 \times \Theta_2 \longrightarrow 2\text{-}\underline{\operatorname{Cat}} \times 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\boxtimes} 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\mathsf{nerve}} \widehat{\Theta_2}$$

cocontinuously in each variable.

4 3 5 4

### Definition

We define the lax Gray tensor product of  $\Theta_2$ -sets by extending

$$\Theta_2 \times \Theta_2 \longleftrightarrow 2\text{-}\underline{\operatorname{Cat}} \times 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\boxtimes} 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\mathsf{nerve}} \widehat{\Theta_2}$$

cocontinuously in each variable.

#### Theorem

The resulting bifunctor 
$$\widehat{\Theta_2} \times \widehat{\Theta_2} \xrightarrow{\otimes} \widehat{\Theta_2}$$
 is left Quillen.

A 3 3 4 4

### Definition

We define the lax Gray tensor product of  $\Theta_2$ -sets by extending

$$\Theta_2 \times \Theta_2 \longleftrightarrow 2\text{-}\underline{\operatorname{Cat}} \times 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\boxtimes} 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\mathsf{nerve}} \widehat{\Theta_2}$$

cocontinuously in each variable.

#### Theorem

The resulting bifunctor 
$$\widehat{\Theta_2} \times \widehat{\Theta_2} \xrightarrow{\otimes} \widehat{\Theta_2}$$
 is left Quillen.

#### Proof

$$\{\cdot\cong \cdot\}$$

### Definition

We define the lax Gray tensor product of  $\Theta_2$ -sets by extending

$$\Theta_2 \times \Theta_2 \longleftrightarrow 2\text{-}\underline{\operatorname{Cat}} \times 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\boxtimes} 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\mathsf{nerve}} \widehat{\Theta_2}$$

cocontinuously in each variable.

#### Theorem

The resulting bifunctor 
$$\widehat{\Theta_2} \times \widehat{\Theta_2} \xrightarrow{\otimes} \widehat{\Theta_2}$$
 is left Quillen.

#### Proof

 $\{\cdot \cong \cdot\}$  is not horizontally free, so  $X \otimes \{\cdot \cong \cdot\}$  is complicated.

#### Definition

We define the lax Gray tensor product of  $\Theta_2$ -sets by extending

$$\Theta_2 \times \Theta_2 \longleftrightarrow 2\text{-}\underline{\operatorname{Cat}} \times 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\boxtimes} 2\text{-}\underline{\operatorname{Cat}} \xrightarrow{\mathsf{nerve}} \widehat{\Theta_2}$$

cocontinuously in each variable.

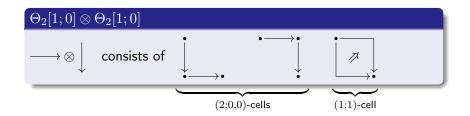
#### Theorem

The resulting bifunctor 
$$\widehat{\Theta_2} \times \widehat{\Theta_2} \xrightarrow{\otimes} \widehat{\Theta_2}$$
 is left Quillen.

#### Proof

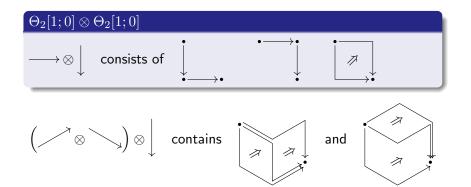
 $\{ \cdot \cong \cdot \} \text{ is not horizontally free, so } X \otimes \{ \cdot \cong \cdot \} \text{ is complicated.}$ Solution: prove  $X \otimes \{ \cdot \cong \cdot \} \simeq X \times \{ \cdot \cong \cdot \}.$ 

# Non-asssociativity



æ

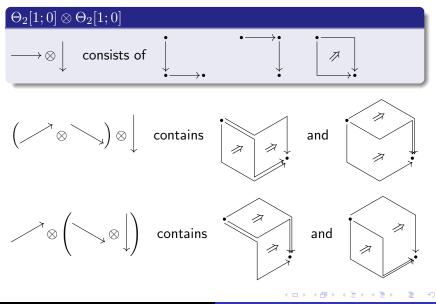
# Non-asssociativity



æ

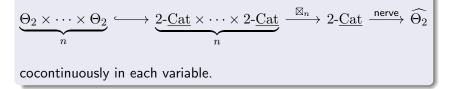
伺 ト く ヨ ト く ヨ ト

# Non-asssociativity



### Definition

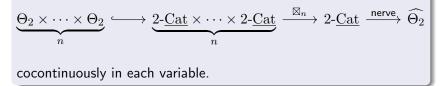
We define the n-ary lax Gray tensor product by extending



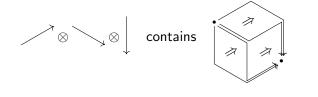
・ 同 ト ・ ヨ ト ・ ヨ ト

### Definition

We define the n-ary lax Gray tensor product by extending



So that:



伺 ト く ヨ ト く ヨ ト

### Proposition

These form a lax monoidal structure on  $\widehat{\Theta_2}$ .

e.g. We have comparison maps

$$\otimes_2(\otimes_2(X,Y),\otimes_1(Z)) \to \otimes_3(X,Y,Z).$$

• = • •

### Proposition

These form a lax monoidal structure on  $\Theta_2$ .

e.g. We have comparison maps

$$\otimes_2(\otimes_2(X,Y),\otimes_1(Z))\to\otimes_3(X,Y,Z).$$

#### Theorem

(The relative version of) these comparison maps are trivial cofibrations.

- - - E - b-

# Thank you!

æ

-