A SEQUENT CALCULUS FOR OPETOPES
CT 2019

Pierre-Louis Curien' Cédric Ho Thanh' Samuel Mimram?
July 9th, 2019

TIRIF, Paris University

2LIX, Ecole Polytechnique

This presentation informally presents some of the main
notions and results of [Curien et al., 2019]
arxXiv:1903.05848, namely a “unnamed” syntax for
opetopes, and a sequent calculus Opt’.

Opetopes

Syntax

Opt’: a sequent calculus for opetopes
Examples

Conclusion

Opetopes

Opetopes are shapes (akin to globules, cubes, simplices,
dendrices, etc.) designed to represent the notion of
composition in every dimension. As such, they were
introduced in [Baez and Dolan, 1998] to describe laws and
coherence in weak higher categories.

Opetopes are shapes (akin to globules, cubes, simplices,
dendrices, etc.) designed to represent the notion of
composition in every dimension. As such, they were
introduced in [Baez and Dolan, 1998] to describe laws and
coherence in weak higher categories.

They have been actively studied over the recent years in
[Hermida et al., 2002], [Cheng, 2003], [Leinster, 2004],

[Kock et al., 2010] and applied to the theory of polygraphs in
[Ho Thanh, 2018al.

Opetopes are shapes (akin to globules, cubes, simplices,
dendrices, etc.) designed to represent the notion of
composition in every dimension. As such, they were
introduced in [Baez and Dolan, 1998] to describe laws and
coherence in weak higher categories.

They have been actively studied over the recent years in
[Hermida et al., 2002], [Cheng, 2003], [Leinster, 2004],

[Kock et al., 2010] and applied to the theory of polygraphs in
[Ho Thanh, 2018al.

A first syntactic account of opetopes has been tried in
[Hermida et al., 2002], but does not seem usable for any
computation.

Informal definition

They are pasting diagrams where every cell is many-to-one i.e.
many inputs, one output. Here is an example of a 3-opetope:

JONAN
VAR

£

Informal definition

They are pasting diagrams where every cell is many-to-one i.e.
many inputs, one output. Here is an example of a 3-opetope:

JONRAN
VAR

Every cell denoted by a || above has dimension 2, so that a
3-opetope really is a pasting diagram of cells of dimension 2.

Informal definition

They are pasting diagrams where every cell is many-to-one i.e.
many inputs, one output. Here is an example of a 3-opetope:

JONAN
VAR

Every cell denoted by a || above has dimension 2, so that a
3-opetope really is a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes,
i.e. pasting diagram of cells of dimension 1 (the simple arrows

—).

Informal definition

Definition
An n-dimensional opetope (or just n-opetope) is a pasting
diagram of (n —1)-opetopes,

Informal definition

Definition

An n-dimensional opetope (or just n-opetope) is a pasting
diagram of (n —1)-opetopes, i.e. a finite set of
(n—1)-opetopes glued along (n —2)-opetopes,

Informal definition

Definition

An n-dimensional opetope (or just n-opetope) is a pasting
diagram of (n —1)-opetopes, i.e. a finite set of
(n—1)-opetopes glued along (n —2)-opetopes, in a
“well-defined manner”.

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call
the point:

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call
the point:

- There is a unique 1-opetope, the arrow:

[

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call
the point:

- There is a unique 1-opetope, the arrow:

[

- 2-opetopes are pasting diagram of 1-opetopes:

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call
the point:

- There is a unique 1-opetope, the arrow:

[

- 2-opetopes are pasting diagram of 1-opetopes:

2:/L\

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call
the point:

- There is a unique 1-opetope, the arrow:

[

- 2-opetopes are pasting diagram of 1-opetopes:

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call
the point:

- There is a unique 1-opetope, the arrow:

[

- 2-opetopes are pasting diagram of 1-opetopes:

(-1
./.

f B (n)/ I | .\m)

Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call
the point:

- There is a unique 1-opetope, the arrow:

[

- 2-opetopes are pasting diagram of 1-opetopes:

Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes

ONEVA

VAR

B —] .

Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes

LN [N

Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes

NN

Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes

Definition: dimension 4

- The induction goes on: 4-opetopes are pasting diagrams
of 3-opetopes:

VAN G VAN AN

Definition: dimension 4

- The induction goes on: 4-opetopes are pasting diagrams
of 3-opetopes:

VAN G VAN AN

This is getting out of hand... g

Problem

1. The graphical approach is neither formal nor manageable
for dimensions > 4.

Problem

1. The graphical approach is neither formal nor manageable
for dimensions > 4.

2. A formal definition either uses T-operads [Leinster, 2004]
or polynomial monads and trees [Kock et al., 2010], which
as is, are not suited for automated computations.

Problem

1. The graphical approach is neither formal nor manageable
for dimensions > 4.

2. A formal definition either uses T-operads [Leinster, 2004]
or polynomial monads and trees [Kock et al., 2010], which
as is, are not suited for automated computations.

Solution

In this presentation, we give a way to define opetopes
syntactically.

Syntax

Since opetopes are pasting diagrams whose cells are
many-to-one, they can be represented as trees:

10

Idea: dimension 0 and 1

Denote by ¢ the unique 0-opetope, a.k.a. the point:

"

Idea: dimension 0 and 1

Denote by ¢ the unique 0-opetope, a.k.a. the point:

and by = the unique 1-opetope, a.k.a. the arrow:

"

Idea: dimension 0 and 1

Denote by ¢ the unique 0-opetope, a.k.a. the point:
and by = the unique 1-opetope, a.k.a. the arrow:

— .

We can represent = as a node of a tree as follows:

"

Idea: dimension 0 and 1

Denote by ¢ the unique 0-opetope, a.k.a. the point:

and by = the unique 1-opetope, a.k.a. the arrow:

— .

We can represent = as a node of a tree as follows:

I o
rm ¥*
| S—

>

Let us add address information.

"

Idea: dimension 2

Then we can:

1. create a tree with that corolla representing =

¢

| |

— % ¥ ¥
¥
—_—

I o

L 4

12

Idea: dimension 2

Then we can:

1. create a tree with that corolla representing =

¢

|] > | |

L 4

[’*ac/ _\

2. consider that tree as a corolla, where the input edges are
the nodes

12

Idea: dimension 2

Then we can:

1. create a tree with that corolla representing =

¢
**] [¥¥/ \\

I o
| T T e T e B
¥
—_—
]
L]
<=

I o

L 4

2. consider that tree as a corolla, where the input edges are
the nodes

3. be convinced that this is a good representation of some
2-opetope! 12

Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

[> [] >

L J

13

Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

13

Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

1 o

é
é
>

13

Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

13

Idea: dimension 3

From there, repeat the process!

14

Idea: dimension 3

From there, repeat the process!

=
— =
—
—
S

0
(]
1
u

14

Idea: dimension 3

From there, repeat the process!

14

Idea: dimension 3

From there, repeat the process!

14

We now want a syntactic description of such trees.

15

We now want a syntactic description of such trees.

Solution

In an n-opetope, every node is decorated by (n —1)-opetope,

15

We now want a syntactic description of such trees.

Solution

LN /0N

In an n-opetope, every node is decorated by (n —1)-opetope,
but (n —1)-opetope does not uniquely identify a node.

15

We now want a syntactic description of such trees.

Solution

[

ZE ANV AN

In an n-opetope, every node is decorated by (n —1)-opetope,
but (n —1)-opetope does not uniquely identify a node. But
addresses do! So we just need to describe a partial map

A — @n_‘]. 15

We encode opetopes recursively as follows:

We encode opetopes recursively as follows:

Reminder

N
Il
B & 1 o

r ¥ r *
%
| S—

L 2

We encode opetopes recursively as follows:

Reminder

N
1l
o 1 o 1 o

We encode opetopes recursively as follows:

Reminder

N
I
o 1 o 1 o

r
X
| S—
I}
g —
r
| S—
[]

We encode opetopes recursively as follows:

Convention

[| = {*(-.

We encode opetopes recursively as follows:

Convention

Syntax: examples

Syntax: examples

Syntax: examples

Reminder

Syntax: examples

0+¢[[1]
o, [0<{0<-=
110 [[1] <0

Reminder

Syntax: examples

Reminder

Syntax: examples

Reminder

Syntax: examples

Syntax: examples

Syntax: examples

Syntax: examples

Syntax: examples

Reminder

N
Il

e 1 o B o
Il

Syntax: examples

Reminder

N
Il

e 1 o B o
Il

Syntax: examples

Reminder

Syntax: examples

Reminder

Syntax: examples

Reminder

Syntax: examples

Reminder

Syntax: examples

19

Syntax: examples

19

Syntax: examples

Reminder

w
Il
o 01 o 0 o 1 o

— ¥
X X
l_J)r_
| —

Il
—_——
r
¥ —
T a

]

n
o
o
E
T
x
Q
X
©
-
c
>
(9p]

Reminder

19

n
o
o
E
T
x
Q
P
©
-
c
>
(9p]

Reminder

19

n
o
o
E
T
x
Q
P
©
-
c
>
(9p]

Reminder

19

n
o
o
E
T
x
Q
X
©
-
c
>
(9p]

Reminder

19

n
o
o
E
T
x
Q
X
©
-
c
>
(9p]

Reminder

19

n
o
o
E
T
x
Q
X
©
-
c
>
(9p]

Reminder

[| = {*(-Q

19

Syntax: examples

Reminder

19

Question
Is this an opetope?

[**%](—

[[x* <11 < # N

Opt’: a sequent calculus for
opetopes

System Opt’

The set of preopetopes P is defined by the following grammar:

21

System Opt’

The set of preopetopes P is defined by the following grammar:

System Opt’ aims to characterize preopetopes that actually
are opetopes.

21

System Opt’: the point rule

The first rule of Opt’ states that we may create points without
any prior assumption:

fpoint Tpoint

22

System Opt’: the shift rule

This rule takes an opetope p and produces a new opetope
having a unique node, decorated in p:

shift

23

System Opt’: the degen rule

This rule takes an opetope and produces a degenerate
opetope from it:

%degen Ldegen

@ {r

2%

System Opt’: the graft rule

This rule glues an n-opetope q to an (n+ 1)-opetope p, the
latter really just being a pasting diagram of n-opetopes, and
“glues” them together:

[a1] <1
NN : q
LY \" bl graft-[b]
N [a1] <11
NV '[Gk] < I

25

Theorem

Derivable preopetopes in system Opt’ are in bijective
correspondence with opetopes.

26

Examples

The proof tree of

-~ point

27

The proof tree of

27

The proof tree of

— point
shift
{*(—0

27

The proof tree of

5 o
~— ¥
| S—

|

27

The proof tree of

I
. RS
SV AR O
¢
IS
— point
shift .
{x < - point
Wshift { shift
— 1k < ¢ []<—0 graft—[x—]
{[]e{w_.
[*](—{*(—0

27

The proof tree of

is
-~ point
shift .
{H_, —~ point
shift shift

{e{x<v {0~
TP graft-[x]
{[*] <« {>(— <~ ¢

e Hel o

<>

27

The proof tree of

LN /AN T

(R

28

The proof tree of

LN/ T

— .

shift

28

The proof tree of

LN /N T

28

The proof tree of

29

The proof tree of

NN

s = s O

29

The proof tree of

(NN

s = s O

graft-[[]]

29

The proof tree of

30

The proof tree of

O N=(N T
is
2 chift
{0«

30

The proof tree of

30

31

31

T/

=

graft-[[+]]

31

T

=

31

Conclusion

Conclusion

- In this presentation, we gave a “unnamed” way to decribe
opetopes using terms and system Opt’.

32

Conclusion

- In this presentation, we gave a “unnamed” way to decribe
opetopes using terms and system Opt’.

- In [Curien et al,, 2019] arXiv:1903.05848 we also
present variants of this system for opetopic sets.

32

Conclusion

- In this presentation, we gave a “unnamed” way to decribe
opetopes using terms and system Opt’.

- In [Curien et al,, 2019] arXiv:1903.05848 we also
present variants of this system for opetopic sets.

- We are experimenting with those new tools to
automatically check coherence laws for an appropriate
definition of opetopic co-groupoid.

32

The various constructs and
algorithms can be easilyTM
implemented, and opetopes
amount to valid proof trees.
An example implementation
in Python 3 is available at
github.com/altaris/
opetopy, where valid proof
trees are represented by
certain expressions that
evaluate without throwing any

exception. For example:

_ P chift

{0<p

def shift(seq: Sequent) -> Sequent:
n = seq.source.dimension
ctx = Context(n + 1)
for a in seq.source.nodeAddresses():
ctx += (a.shift(), a)
return Sequent(
ctx,
Preopetope. fromDictOfPreopetopes(
{Address.epsilon(n):
- seq.source}
),

seq.source

33

github.com/altaris/opetopy
github.com/altaris/opetopy

Thank you for your attention!

References i

[W Baez). C. and Dolan, J. (1998).
Higher-dimensional algebra. Ill. n-categories and the
algebra of opetopes.
Advances in Mathematics, 135(2):145-206.

M Cheng, E. (2003).
The category of opetopes and the category of opetopic
sets.
Theory and Applications of Categories, 11:No. 16, 353-374.

[4 Curien, P-L, Ho Thanh, C, and Mimram, S. (2019).
Syntactic approaches for opetopes.
arxXiv:1903.05848 [math.CT].

34

References ii

[Hermida, C, Makkai, M., and Power, J. (2002).
On weak higher-dimensional categories. I. 3.
Journal of Pure and Applied Algebra, 166(1-2):83-104.
[Ho Thanh, C. (2018a).
The equivalence between opetopic sets and many-to-one
polygraphs.
arXiv:1806.08645 [math.CT].
[§ Ho Thanh, C. (2018b).
opetopy.
https://github.com/altaris/opetopy.

35

https://github.com/altaris/opetopy

References iii

@ Kock, J., Joyal, A, Batanin, M., and Mascari, J.-F. (2010).
Polynomial functors and opetopes.
Advances in Mathematics, 224(6):2690-2737.

3 Leinster, T. (2004).
Higher Operads, Higher Categories.
Cambridge University Press.

36

	Opetopes
	Syntax
	Opt?: a sequent calculus for opetopes
	Examples
	Conclusion

