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This presentation informally presents some of the main
notions and results of [Curien et al., 2019]
arxXiv:1903.05848, namely a “unnamed” syntax for
opetopes, and a sequent calculus Opt’.
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dendrices, etc.) designed to represent the notion of
composition in every dimension. As such, they were
introduced in [Baez and Dolan, 1998] to describe laws and
coherence in weak higher categories.
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dendrices, etc.) designed to represent the notion of
composition in every dimension. As such, they were
introduced in [Baez and Dolan, 1998] to describe laws and
coherence in weak higher categories.

They have been actively studied over the recent years in
[Hermida et al., 2002], [Cheng, 2003], [Leinster, 2004],

[Kock et al., 2010] and applied to the theory of polygraphs in
[Ho Thanh, 2018al.

A first syntactic account of opetopes has been tried in
[Hermida et al., 2002], but does not seem usable for any
computation.
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Informal definition

They are pasting diagrams where every cell is many-to-one i.e.
many inputs, one output. Here is an example of a 3-opetope:

JONAN
VAR

Every cell denoted by a || above has dimension 2, so that a
3-opetope really is a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes,
i.e. pasting diagram of cells of dimension 1 (the simple arrows

—).
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Informal definition

Definition

An n-dimensional opetope (or just n-opetope) is a pasting
diagram of (n —1)-opetopes, i.e. a finite set of
(n—1)-opetopes glued along (n —2)-opetopes, in a
“well-defined manner”.
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Definition: low dimensions

- There is a unique 0-dimensional opetope, which we'll call
the point:

- There is a unique 1-opetope, the arrow:

[

- 2-opetopes are pasting diagram of 1-opetopes:



Definition: dimension 3

- 3-opetopes are pasting diagrams of 2-opetopes

ONEVA
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Definition: dimension 4

- The induction goes on: 4-opetopes are pasting diagrams
of 3-opetopes:

VAN G VAN AN

This is getting out of hand... g
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Problem

1. The graphical approach is neither formal nor manageable
for dimensions > 4.

2. A formal definition either uses T-operads [Leinster, 2004]
or polynomial monads and trees [Kock et al., 2010], which
as is, are not suited for automated computations.

Solution

In this presentation, we give a way to define opetopes
syntactically.
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Since opetopes are pasting diagrams whose cells are
many-to-one, they can be represented as trees:
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Idea: dimension 0 and 1

Denote by ¢ the unique 0-opetope, a.k.a. the point:

and by = the unique 1-opetope, a.k.a. the arrow:

— .

We can represent = as a node of a tree as follows:
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Let us add address information.
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Idea: dimension 2

Then we can:

1. create a tree with that corolla representing =

¢

| |

— % ¥ ¥
¥
—_—

I o

L 4

12



Idea: dimension 2

Then we can:

1. create a tree with that corolla representing =

¢
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2. consider that tree as a corolla, where the input edges are
the nodes
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Idea: dimension 2

Then we can:

1. create a tree with that corolla representing =
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2. consider that tree as a corolla, where the input edges are
the nodes

3. be convinced that this is a good representation of some
2-opetope! 12



Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:
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Idea: dimension 3

From there, repeat the process!
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In an n-opetope, every node is decorated by (n —1)-opetope,
but (n —1)-opetope does not uniquely identify a node.
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We now want a syntactic description of such trees.

Solution

[

ZE ANV AN

In an n-opetope, every node is decorated by (n —1)-opetope,
but (n —1)-opetope does not uniquely identify a node. But
addresses do! So we just need to describe a partial map

A — @n_‘]. 15
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We encode opetopes recursively as follows:
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Reminder
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Question
Is this an opetope?

[**%](—

[[x* <11 < # N



Opt’: a sequent calculus for
opetopes




System Opt’

The set of preopetopes P is defined by the following grammar:
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System Opt’

The set of preopetopes P is defined by the following grammar:

System Opt’ aims to characterize preopetopes that actually
are opetopes.
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System Opt’: the point rule

The first rule of Opt’ states that we may create points without
any prior assumption:

fpoint Tpoint
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System Opt’: the shift rule

This rule takes an opetope p and produces a new opetope
having a unique node, decorated in p:

shift

23



System Opt’: the degen rule

This rule takes an opetope and produces a degenerate
opetope from it:

%degen Ldegen

@ {r

2%



System Opt’: the graft rule

This rule glues an n-opetope q to an (n+ 1)-opetope p, the
latter really just being a pasting diagram of n-opetopes, and
“glues” them together:

[a1] <1
NN : q
LY \" bl graft-[b]
N [a1] <11
NV '[Gk] < I

25



Theorem

Derivable preopetopes in system Opt’ are in bijective
correspondence with opetopes.
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Examples




The proof tree of
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The proof tree of
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The proof tree of
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The proof tree of
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The proof tree of
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The proof tree of
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The proof tree of
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The proof tree of
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The proof tree of
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The proof tree of
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The proof tree of
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The proof tree of
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Conclusion

- In this presentation, we gave a “unnamed” way to decribe
opetopes using terms and system Opt’.

- In [Curien et al,, 2019] arXiv:1903.05848 we also
present variants of this system for opetopic sets.

- We are experimenting with those new tools to
automatically check coherence laws for an appropriate
definition of opetopic co-groupoid.
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The various constructs and
algorithms can be easilyTM
implemented, and opetopes
amount to valid proof trees.
An example implementation
in Python 3 is available at
github.com/altaris/
opetopy, where valid proof
trees are represented by
certain expressions that
evaluate without throwing any

exception. For example:

_ P chift

{0<p

def shift(seq: Sequent) -> Sequent:
n = seq.source.dimension
ctx = Context(n + 1)
for a in seq.source.nodeAddresses():
ctx += (a.shift(), a)
return Sequent(
ctx,
Preopetope. fromDictOfPreopetopes(
{Address.epsilon(n):
- seq.source}
),

seq.source

33


github.com/altaris/opetopy
github.com/altaris/opetopy

Thank you for your attention!
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