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This presentation informally presents some of the main
notions and results of [Curien et al., 2019]
arXiv:1903.05848, namely a “unnamed” syntax for
opetopes, and a sequent calculus Opt?.
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Opetopes



In a nutshell...

Opetopes are shapes (akin to globules, cubes, simplices,
dendrices, etc.) designed to represent the notion of
composition in every dimension. As such, they were
introduced in [Baez and Dolan, 1998] to describe laws and
coherence in weak higher categories.

They have been actively studied over the recent years in
[Hermida et al., 2002], [Cheng, 2003], [Leinster, 2004],
[Kock et al., 2010] and applied to the theory of polygraphs in
[Ho Thanh, 2018a].

A first syntactic account of opetopes has been tried in
[Hermida et al., 2002], but does not seem usable for any
computation.
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Informal definition

They are pasting diagrams where every cell is many-to-one i.e.
many inputs, one output. Here is an example of a 3-opetope:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

Every cell denoted by a ⇓ above has dimension 2, so that a
3-opetope really is a pasting diagram of cells of dimension 2.

We further ask those cells of dimension 2 to be 2-opetopes,
i.e. pasting diagram of cells of dimension 1 (the simple arrows
→).

. .⇓
. .

.

⇓ .

. .

.
⇓
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Informal definition

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓

Definition
An n-dimensional opetope (or just n-opetope) is a pasting
diagram of (n − 1)-opetopes,

i.e. a finite set of
(n − 1)-opetopes glued along (n − 2)-opetopes, in a
“well-defined manner”.
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Definition: low dimensions

• There is a unique 0-dimensional opetope, which we’ll call
the point:

.

• There is a unique 1-opetope, the arrow:

. .

• 2-opetopes are pasting diagram of 1-opetopes:

6



Definition: low dimensions

• There is a unique 0-dimensional opetope, which we’ll call
the point:

.

• There is a unique 1-opetope, the arrow:

. .

• 2-opetopes are pasting diagram of 1-opetopes:

6



Definition: low dimensions

• There is a unique 0-dimensional opetope, which we’ll call
the point:

.

• There is a unique 1-opetope, the arrow:

. .

• 2-opetopes are pasting diagram of 1-opetopes:

3 =
.

. .

.
⇓

6



Definition: low dimensions

• There is a unique 0-dimensional opetope, which we’ll call
the point:

.

• There is a unique 1-opetope, the arrow:

. .

• 2-opetopes are pasting diagram of 1-opetopes:

2 =
. .

.

⇓

6



Definition: low dimensions

• There is a unique 0-dimensional opetope, which we’ll call
the point:

.

• There is a unique 1-opetope, the arrow:

. .

• 2-opetopes are pasting diagram of 1-opetopes:

1 =
. .⇓

6



Definition: low dimensions

• There is a unique 0-dimensional opetope, which we’ll call
the point:

.

• There is a unique 1-opetope, the arrow:

. .

• 2-opetopes are pasting diagram of 1-opetopes:

n =

.

. . .

.
(n)
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Definition: dimension 3

• 3-opetopes are pasting diagrams of 2-opetopes

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .
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⇓
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Definition: dimension 4

• The induction goes on: 4-opetopes are pasting diagrams
of 3-opetopes:

. .

.

⇓

⇓ ⇛
. .

.

⇓

.

.

.

.

.

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓

.

.

.

.

.

⇓

.
⇓

⇓ ⇓

⇓
⇛

.

.

.
.

.

.

⇓

This is getting out of hand...
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Motivation

Problem

1. The graphical approach is neither formal nor manageable
for dimensions ≥ 4.

2. A formal definition either uses T-operads [Leinster, 2004]
or polynomial monads and trees [Kock et al., 2010], which
as is, are not suited for automated computations.

Solution
In this presentation, we give a way to define opetopes
syntactically.
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Syntax



Idea

Since opetopes are pasting diagrams whose cells are
many-to-one, they can be represented as trees:

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
⟿

3

12

◾

◾◾◾

◾◾ ◾
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Idea: dimension 0 and 1

Denote by ⧫ the unique 0-opetope, a.k.a. the point:

.

and by ◾ the unique 1-opetope, a.k.a. the arrow:

. .

We can represent ◾ as a node of a tree as follows:

Let us add address information.
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Let us add address information.
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Idea: dimension 2

Then we can:

1. create a tree with that corolla representing ◾

◾

◾

◾

⧫

⧫

⧫

⧫

∗

∗

∗

[]

[∗]

[∗∗]

2. consider that tree as a corolla, where the input edges are
the nodes

3. be convinced that this is a good representation of some
2-opetope!
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

◾

◾

⧫

⧫

⧫

∗

∗

[]

[∗]
⟿

2
◾

◾ ◾

[∗] []

[]
⟿

. .

.

⇓
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

◾

◾

◾

⋮

⧫

⧫

⧫

⧫

⧫

∗

∗

[]

[∗]

[∗∗⋯∗]
∗

∗

[]

⟿
n
◾

◾ ◾ ◾
⋯

[∗∗⋯∗]

[∗] []

[]
⟿

.

. . .

.
(n)

(n − 1)

(1)⇓
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

◾
⧫

⧫ ∗

[] ⟿ 1
◾

◾ []

[] ⟿
. .⇓
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Idea: dimension 2

Depending on the original tree, we obtain different 2-opetopes:

⧫ ⟿
0
◾
[]

⟿
.

⇓

13



Idea: dimension 3

From there, repeat the process!

2

2

◾

◾◾

◾ ◾

[]

[[∗]]
[∗
]

[]

[]

[∗
]

⟿ A
3

2 2
[]

[]

[[∗
]]

⟿

.

. .

.

⇓
⇓ ⇛

.

. .

.
⇓
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Idea: dimension 3

From there, repeat the process!

1

0

◾

◾
[]

[[]]
[]

⟿ B
0

1 0
[]

[]

[[]
]

⟿
.
⇓

⇓
⇛

.

⇓
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Idea: dimension 3

From there, repeat the process!

2

0

◾

◾◾
[]

[[∗]]
[∗
]

[]

⟿ C
0

2 0
[]

[]

[[∗
]]

⟿
. .
⇓
⇓ ⇛

. .

⇓
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Idea: dimension 3

From there, repeat the process!

3

12

◾

◾◾◾

◾◾ ◾

[]

[[∗∗]][[∗]]

[∗∗
]

[∗]

[]

[]

[]

[∗
]

⟿ D
4

3 2 1
[]

[[∗]]

[[∗
∗]]

[]

⟿

.

. .

.

.

⇓ ⇓

⇓
⇛

.

. .

.

.

⇓
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Syntax

We now want a syntactic description of such trees.

Solution

In an n-opetope, every node is decorated by (n − 1)-opetope,
but (n − 1)-opetope does not uniquely identify a node. But
addresses do! So we just need to describe a partial map

AÐ→ On−1.
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Syntax

We encode opetopes recursively as follows:

2

2

◾

◾◾

◾ ◾

[]

[[∗]]

[∗
]

[]

[]

[∗
]

⟿
⎧⎪⎪⎨⎪⎪⎩

[]← 2
[[∗]]← 2
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Syntax: examples

1

0

◾

◾
[]

[[]]
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⟿
⎧⎪⎪⎨⎪⎪⎩

[]← 1
[[]]← 0
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Syntax

Question
Is this an opetope?

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[]←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[∗]← ⧫
[∗∗]← ⧫
[∗ ∗ ∗]← ⧫

[∗∗]← {[]← {[]← {[]← {[]← {[]← {[]← {[]← {[]← ⧫

[∗ ∗ ∗]←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[]←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[]← {[]← ⧫
[∗]← ⧫
[∗∗]← ⧫

[[]]← {[]← {∗← ⧫

[[[]]]←
⎧⎪⎪⎨⎪⎪⎩

[[[∗]]]← {∗← ⧫
[∗]← {∗← ⧫

[[∗ ∗ ∗]]← ⧫
20



Opt?: a sequent calculus for
opetopes



System Opt?

The set of preopetopes P is defined by the following grammar:

P ::= ⧫

|
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A← P
⋮
A← P

| {{P

System Opt? aims to characterize preopetopes that actually
are opetopes.
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System Opt?: the point rule

The first rule of Opt? states that we may create points without
any prior assumption:

point. point⧫

22



System Opt?: the shift rule

This rule takes an opetope p and produces a new opetope
having a unique node, decorated in p:

2

2

◾

◾◾

◾ ◾

[]

[[∗]]
[∗
]

[]

[]

[∗
]

shift

A
3

2 2
[]

[]

[[∗
]]

p
shift

{[]← p

23



System Opt?: the degen rule

This rule takes an opetope and produces a degenerate
opetope from it:

.
degen.

⇓

p degen
{{p

24



System Opt?: the graft rule

This rule glues an n-opetope q to an (n + 1)-opetope p, the
latter really just being a pasting diagram of n-opetopes, and
“glues” them together:

.

.

.
⇓

.

. .

.
⇓
⇓

.

. .

.
⇓

⇓.
⇓

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[a1]← r1
⋮
[ak]← rk

q

graft-[b]⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[a1]← r1
⋮
[ak]← rk
[b]← q

25



Main result

Theorem
Derivable preopetopes in system Opt? are in bijective
correspondence with opetopes.

26



Examples



Examples

The proof tree of

⧫ = .

is

point⧫
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Examples

The proof tree of
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⧫

⧫ ∗

[]
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Examples

The proof tree of

2 =
. .

.

⇓ ⟿

◾

◾

⧫

⧫

⧫

∗

∗

[]

[∗]

is
point⧫ shift

{∗← ⧫
shift

{[]← {∗← ⧫

point⧫ shift
{[]← ⧫

graft-[∗]
{
[]← {∗← ⧫
[∗]← {∗← ⧫
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Examples

The proof tree of

3 =
.

. .

.
⇓ ⟿

◾
◾
◾

⧫
⧫
⧫
⧫

∗

∗

∗

[]
[∗]
[∗∗]
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point⧫ shift
{∗← ⧫
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Conclusion

• In this presentation, we gave a “unnamed” way to decribe
opetopes using terms and system Opt?.

• In [Curien et al., 2019] arXiv:1903.05848 we also
present variants of this system for opetopic sets.

• We are experimenting with those new tools to
automatically check coherence laws for an appropriate
definition of opetopic∞-groupoid.
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opetopy

The various constructs and
algorithms can be easilyTM

implemented, and opetopes
amount to valid proof trees.
An example implementation
in Python 3 is available at
github.com/altaris/
opetopy, where valid proof
trees are represented by
certain expressions that
evaluate without throwing any

exception. For example:
p

shift
{[]← p

def shift(seq: Sequent) -> Sequent:
n = seq.source.dimension
ctx = Context(n + 1)
for a in seq.source.nodeAddresses():

ctx += (a.shift(), a)
return Sequent(

ctx,
Preopetope.fromDictOfPreopetopes(

{Address.epsilon(n):
seq.source}↪

),
seq.source

)

33

github.com/altaris/opetopy
github.com/altaris/opetopy


Thank you for your attention!
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