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Background

Differentiable Stacks

Definition

A split differentiable stack is a (2,1)-sheaf

X : Man→ Gpd

with respect to the open cover topology on SMan with a
morphism y(M)→ X such that

1 For all y(N)→ X , y(N)×X y(M) is a manifold.

2 For all y(N)→ X , y(N)×X y(M)→ y(N) is a submersion

There is an embedding of smooth manifolds into the category of
stacks, using the Yoneda lemma for (2,1)-categories.
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Tangent Structure

Tangent Bundle of a Differentiable Stack

There is a tangent bundle construction on the category of
differentiable stacks, due to Hepworth. It is constructed via a Kan
extension:

SMan SMan DStack

DStack

T

T∗

This has the property that y ◦ T ∼= T ∗ ◦ y .
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Tangent Structure

Problems

These Kan extension definitions of the tangent bundle can be quite
challenging to work with.

Kan extension isn’t a monoidal functor (so T ∗T ∗ need not
equal (TT )∗)

Addition of tangent vectors is not well defined in general.

It’s not clear whether symmetry of partial derivatives holds.

Possible approach: Identify a full subcategory of microlinear
stacks

Goal

Refine the notion of a differentiable stack based on enriched
category theory so that it has a well-behaved tangent bundle (in
the sense of tangent categories).
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Tangent Categories

Classical Definition

Definition (Rosicky, Cockett&Cruttwell)

A tangent category is a category X is given by:

A natural additive bundle (T , p, 0,+), where pullback powers
of p are preserved by T .

Natural transformations c : T 2 ⇒ T 2, ` : T ⇒ T 2.

satisfying some coherences.

The flip c represents symmetry of mixed partial derivatives
∂2f (x ,y)
∂x∂y (a, b) · (u, v).

The map ` is universal, and represents linearity of the vector

argument ∂2f (x)
∂x (a) · (v).
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Tangent Categories

Classical Definition

Examples of tangent categories

The category of smooth manifolds

The microlinear objects of a model of Synthetic Differential
Geometry

Examples arising from computer science (e.g. the coKleisli
category, or as JS will tell you, the co-Eilenberg-Moore
category of a monoidal differential category).

Some Successes of Tangent Categories

Very clear description of Sector Form cohomology, leading to
some new observations. (Cruttwell & Lucyshyn-Wright)

New observations on connections and affine manifolds.

Related to the semantics of differentiable programming
languages.
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Tangent Categories

Category of Weil Algebras

Weil Algebras

R-Weil algebras: infinitesimal thickening of R, (R[x ]/x2)

Definition

The category of Weil algebras is the full subcategory of RAlg/R of
π : W → R such that:

ker(π) is nilpotent.

The underlying R-module of W is Rn

Proposition

Every Weil algebra may be written R[xi ]/I

Coproducts: R[xi ]/I ⊗ R[yj ]/J = R[xi , yj ]/(I ∪ J)

Products: R[xi ]/I × R[yj ]/J = R[xi , yj ]/(I ∪ J ∪ {xiyj})
R is a zero object
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Tangent Categories

Category of Weil Algebras

Proposition (Leung)

Let W := R[x ]/x2. The category of Weil algebras is a tangent
category, with T (−) := W ⊗−.

We can restrict our attention to powers of W to construct the free
tangent category:

Definition (Leung)

The category Weil1 is the full subcategory of N−Weil whose
objects are of the form: W n1 ⊗ · · · ⊗W nk

Note that this category has binary pullbacks, and they are
preserved by W ⊗−.

Remark

We regard (Weil1,⊗,R) as a monoidal category.
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Tangent Categories

Equivalent Definitions

Theorem

The following are equivalent.

1 A tangent category X
2 A monoidal functor Weil1 → [X ,X ] sending binary pullbacks

to pointwise limits (Leung)

3 An actegory Weil1 ×X → X preserving binary pullbacks in
Weil1 (Leung)

4 A category enriched in E := Mod(Weil1) with powers by
representable functors (Garner).

(3) to (4) follows by a theorem due to Wood.
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Two Generalizations

Two things

We need two generalizations to move forwards:

Sheaves

The sheaf condition is at the core of the classical definition of a
differentiable stack, is already an enriched concept. How can we
generalize this?

Strict Tangent (2,1)-categories

We want a definition of 2-category with tangent structure
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Tangent sheaves

The following theorem is from Borceux and Quinteiro

Theorem

The following are equivalent for C enriched in a regular, finitely
presented V

Grothendieck topologies on C.

Left-exact idempotent monads on [C,V].

Universal closure operations on [C,V].

But the category E is not regular!
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Two Generalizations

Tangent sheaves

Definition (Tangent sheaf)

A tangent sheaf on a tangent category C is an EM-algebra of a
left-exact idempotent monad M on [C, E ].

We may apply the following theorem due to Wolff:

Theorem (Wolff)

Sheaves commute with models of enriched sketches.

Using forthcoming work, we have:

Corollary (Gallagher, Lucyshyn-Wright, M.)

The category of differential objects in Sh(M) is equivalent to a
category of sheaves into differential objects of E .
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Two Generalizations

(Strict) Tangent 2-categories

Definition

A strict tangent 2-category is a category enriched in

Ê := Mod(Weil1 ⊗ TGpd ,Set)

with powers by representable functors Weil1 → Set ↪→ Gpd .

Slogan

A strict tangent structure on a (2,1)-category is property of the
tangent structure on the underlying category.
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(Strict) Tangent 2-categories

Tangent 2-categories as an actegory

Proposition

For every 2-functor Weil1 ×X → X which satisfies the coherences
of an actegory on the nose, there is a corresponding category
enriched in Mod(Weil1 ⊗ Gpd) with powers by representables
Weil1 → Set ↪→ Gpd ,

For the implication, the new hom is defined the same way:

X (A,B)(V ) := X (A,V ∝ B) ∈ Gpd

note that we can identify a functor Weil1 into Gpd as a 1-category
with a 2-functor where we treat Weil1 as a 2-category.
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(Strict) Tangent 2-categories

Tangent (2,1)-Monad

Question: Why is it insufficient to have a (2,1)-category whose
underlying category is a tangent category?
Answer: Consider the underlying (2,1)-category of a tangent
(2,1)-category K, there is the tangent 2-monad

y(R[x , y ]/x2, y2) t M y(R[z ]/z2) t M
x ,y 7→z

M y(R[z ]/z2) t M0

By the following theorem we may regard being a (2,1)-monad (or
2-monad) as a property of the underlying monad.

Theorem (Power)

If C is a (2,1)-category with powers and copowers by →, then any
1-monad on U(C) has at most one enrichment.
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Two Generalizations

(Strict) Tangent 2-categories

We also see that a tangent (2,1)-category has a 2-commutative
monoid of vector spaces.

Definition

A map X : 1→ C(A, y(x2) t A) that is a section of pA on the nose
is a geometric vector field - these form a commutative monoid.
Note that X is an “object” of C(A, y(x2) t A) : Gpd(E), and given
2-cells γ : X ⇒ X ′, ψ : Y ⇒ Y ′, we may also form
ψ + γ : X + Y ⇒ X ′ + Y ′.

A TA

X+Y

X ′+Y ′

ψ + γ := A T2A TA

(X ,Y )

(X ′,Y ′)

(ψ,γ)
+
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Two Generalizations

(Strict) Tangent 2-categories

Examples

Lie groupoids in a tangent category.

Restriction tangent categories is a tangent 2-category (the
2-cells are ≤).

A 2-category with 2-biproducts.

Non-Examples

Lex with T = Mod(ABun,−). The addition is given by fibered
biproducts of additive bundles, so addition is only associated up to
a coherent isomorphism.
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Tangent Stacks

Remark

There is a functor I : TangCat ↪→ Tang-(2,1)-Cat by lifting sets up
to discrete groupoids.

Definition

Let X be a tangent 1-category, and M be an left-exact idempotent
Ê-monad on [I (X ), Ê ]. An EM-algebra of M is a tangent stack
over M.

Theorem

The (2,1)-category of tangent stacks on a tangent category is a
(2,1)-tangent category.



An Enriched Perspective on Differentiable Stacks

Tangent Stacks

Conclusions and Future Work

We now have a notion of “tangent stack” (and geometric tangent
stack) that has a well behaved tangent bundle.
What can we do with this/what is left to do?

How do tangent stacks relate to tangent fibrations?

How can we weaken our definition of tangent 2-category, and
what is the relevent coherence theorem.

Sector form cohomology works on tangent stacks without any
significant modification (differential forms on stacks are
hard!).
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