- Motivation

An Enriched Perspective on Differentiable Stacks

Benjamin MacAdam Joint work with Jonathan Gallagher

July 9, 2019

- Motivation

Background

Differentiable Stacks

Definition

A split differentiable stack is a (2,1)-sheaf

 $\mathcal{X}: \textbf{Man} \to \textbf{Gpd}$

with respect to the open cover topology on **SMan** with a morphism $y(M) \rightarrow \mathcal{X}$ such that

1 For all $y(N) \to \mathcal{X}$, $y(N) \times_{\mathcal{X}} y(M)$ is a manifold.

2 For all $y(N) \to \mathcal{X}$, $y(N) \times_{\mathcal{X}} y(M) \to y(N)$ is a submersion

There is an embedding of smooth manifolds into the category of stacks, using the Yoneda lemma for (2,1)-categories.

- Motivation

└─ Tangent Structure

Tangent Bundle of a Differentiable Stack

There is a tangent bundle construction on the category of differentiable stacks, due to Hepworth. It is constructed via a Kan extension:

This has the property that $y \circ T \cong T^* \circ y$.

- Motivation

└─ Tangent Structure

Problems

These Kan extension definitions of the tangent bundle can be quite challenging to work with.

- Kan extension isn't a monoidal functor (so T*T* need not equal (TT)*)
- Addition of tangent vectors is not well defined in general.
- It's not clear whether symmetry of partial derivatives holds.

Possible approach: Identify a full subcategory of *microlinear* stacks

Goal

Refine the notion of a differentiable stack based on enriched category theory so that it has a well-behaved tangent bundle (in the sense of tangent categories).

- Motivation

- Overview of Talk

Motivation

- Background
- Tangent Structure
- Overview of Talk
- 2 Tangent Categories
 - Classical Definition
 - Category of Weil Algebras
 - Equivalent Definitions
- 3 Two Generalizations
 - Tangent sheaves
 - (Strict) Tangent 2-categories

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4 Tangent Stacks

└─ Tangent Categories

Classical Definition

Definition (Rosicky, Cockett&Cruttwell)

A tangent category is a category ${\mathbb X}$ is given by:

- A natural additive bundle (*T*, *p*, 0, +), where pullback powers of *p* are preserved by *T*.
- Natural transformations $c: T^2 \Rightarrow T^2$, $\ell: T \Rightarrow T^2$.

satisfying some coherences.

The flip *c* represents symmetry of mixed partial derivatives $\frac{\partial^2 f(x,y)}{\partial x \partial y}(a,b) \cdot (u,v).$ The map ℓ is universal, and represents linearity of the vector argument $\frac{\partial^2 f(x)}{\partial x}(a) \cdot (v).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

- └─ Tangent Categories
 - Classical Definition

Examples of tangent categories

- The category of smooth manifolds
- The microlinear objects of a model of Synthetic Differential Geometry
- Examples arising from computer science (e.g. the coKleisli category, or as JS will tell you, the co-Eilenberg-Moore category of a monoidal differential category).

Some Successes of Tangent Categories

- Very clear description of Sector Form cohomology, leading to some new observations. (Cruttwell & Lucyshyn-Wright)
- New observations on connections and affine manifolds.
- Related to the semantics of differentiable programming languages.

└─ Tangent Categories

└─ Category of Weil Algebras

Weil Algebras

R-Weil algebras: infinitesimal thickening of R, $(R[x]/x^2)$

Definition

The category of *Weil algebras* is the full subcategory of RAIg/R of $\pi: W \to R$ such that:

- ker(π) is nilpotent.
- The underlying *R*-module of *W* is *Rⁿ*

Proposition

- Every Weil algebra may be written R[x_i]/I
- Coproducts: $R[x_i]/I \otimes R[y_j]/J = R[x_i, y_j]/(I \cup J)$
- Products: $R[x_i]/I \times R[y_j]/J = R[x_i, y_j]/(I \cup J \cup \{x_i, y_j\})$
- R is a zero object

└─ Tangent Categories

Category of Weil Algebras

Proposition (Leung)

Let $W := R[x]/x^2$. The category of Weil algebras is a tangent category, with $T(-) := W \otimes -$.

We can restrict our attention to powers of W to construct the *free tangent category*:

Definition (Leung)

The category **Weil**₁ is the full subcategory of \mathbb{N} – **Weil** whose objects are of the form: $W^{n_1} \otimes \cdots \otimes W^{n_k}$ Note that this category has binary pullbacks, and they are preserved by $W \otimes -$.

Remark

We regard (Weil₁, \otimes , R) as a monoidal category.

└─ Tangent Categories

Equivalent Definitions

Theorem

The following are equivalent.

- **1** A tangent category \mathcal{X}
- 2 A monoidal functor Weil₁ → [X, X] sending binary pullbacks to pointwise limits (Leung)
- 3 An actegory Weil₁ × X → X preserving binary pullbacks in Weil₁ (Leung)
- A category enriched in E := Mod(Weil₁) with powers by representable functors (Garner).

(3) to (4) follows by a theorem due to Wood.

└─ Two Generalizations

We need two generalizations to move forwards:

Sheaves

The sheaf condition is at the core of the classical definition of a differentiable stack, is already an enriched concept. How can we generalize this?

Strict Tangent (2,1)-categories

We want a definition of 2-category with tangent structure

└─ Two Generalizations

└─ Tangent sheaves

The following theorem is from Borceux and Quinteiro

Theorem

The following are equivalent for ${\mathcal C}$ enriched in a regular, finitely presented ${\mathcal V}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Grothendieck topologies on C.
- Left-exact idempotent monads on [C, V].
- Universal closure operations on [C, V].

But the category \mathcal{E} is not regular!

└─ Two Generalizations

└─ Tangent sheaves

Definition (Tangent sheaf)

A tangent sheaf on a tangent category C is an EM-algebra of a left-exact idempotent monad M on $[C, \mathcal{E}]$.

We may apply the following theorem due to Wolff:

Theorem (Wolff)

Sheaves commute with models of enriched sketches.

Using forthcoming work, we have:

Corollary (Gallagher, Lucyshyn-Wright, M.)

The category of differential objects in Sh(M) is equivalent to a category of sheaves into differential objects of \mathcal{E} .

└─ Two Generalizations

└─(Strict) Tangent 2-categories

Definition

A strict tangent 2-category is a category enriched in

 $\hat{\mathcal{E}} := \mathit{Mod}(\mathit{Weil}_1 \otimes \mathit{TGpd}, \mathit{Set})$

with powers by representable functors $Weil_1 \rightarrow Set \hookrightarrow Gpd$.

Slogan

A strict tangent structure on a (2,1)-category is *property* of the tangent structure on the underlying category.

-Two Generalizations

└ (Strict) Tangent 2-categories

Tangent 2-categories as an actegory

Proposition

For every 2-functor $Weil_1 \times \mathcal{X} \to \mathcal{X}$ which satisfies the coherences of an actegory on the nose, there is a corresponding category enriched in $Mod(Weil_1 \otimes Gpd)$ with powers by representables $Weil_1 \to Set \hookrightarrow Gpd$,

For the implication, the new hom is defined the same way:

$$\mathcal{X}(A,B)(V) := \mathcal{X}(A,V \propto B) \in \mathbf{Gpd}$$

note that we can identify a functor $Weil_1$ into Gpd as a 1-category with a 2-functor where we treat $Weil_1$ as a 2-category.

└─ Two Generalizations

(Strict) Tangent 2-categories

Tangent (2,1)-Monad

Question: Why is it insufficient to have a (2,1)-category whose underlying category is a tangent category? **Answer:** Consider the underlying (2,1)-category of a tangent (2,1)-category \mathcal{K} , there is the *tangent 2-monad*

$$y(R[x,y]/x^2,y^2) \pitchfork M \xrightarrow{x,y \mapsto z} y(R[z]/z^2) \pitchfork M$$
$$M \xrightarrow{0} y(R[z]/z^2) \pitchfork M$$

By the following theorem we may regard being a (2,1)-monad (or 2-monad) as a property of the underlying monad.

Theorem (Power)

If C is a (2,1)-category with powers and copowers by \rightarrow , then **any** 1-monad on U(C) has at most one enrichment.

└─ Two Generalizations

(Strict) Tangent 2-categories

We also see that a tangent (2,1)-category has a 2-commutative monoid of vector spaces.

Definition

A map $X : 1 \to \mathcal{C}(A, y(x^2) \pitchfork A)$ that is a section of p_A on the nose is a *geometric vector field* - these form a commutative monoid. Note that X is an "object" of $\mathcal{C}(A, y(x^2) \pitchfork A) : Gpd(\mathcal{E})$, and given 2-cells $\gamma : X \Rightarrow X', \psi : Y \Rightarrow Y'$, we may also form $\psi + \gamma : X + Y \Rightarrow X' + Y'$.

$$A \underbrace{\psi + \gamma}_{X' + Y'} TA := A \underbrace{(\chi, Y)}_{(X', Y')} T_2A \xrightarrow{+} TA$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

└─ Two Generalizations

└─(Strict) Tangent 2-categories

Examples

- Lie groupoids in a tangent category.
- Restriction tangent categories is a tangent 2-category (the 2-cells are ≤).
- A 2-category with 2-biproducts.

Non-Examples

Lex with T = Mod(ABun, -). The addition is given by fibered biproducts of additive bundles, so addition is only associated *up to a coherent isomorphism*.

- Tangent Stacks

Remark

There is a functor I : TangCat \hookrightarrow Tang-(2,1)-Cat by lifting sets up to discrete groupoids.

Definition

Let \mathcal{X} be a tangent 1-category, and M be an left-exact idempotent $\hat{\mathcal{E}}$ -monad on $[I(\mathcal{X}), \hat{\mathcal{E}}]$. An EM-algebra of M is a *tangent stack* over M.

Theorem

The (2,1)-category of tangent stacks on a tangent category is a (2,1)-tangent category.

Tangent Stacks

Conclusions and Future Work

We now have a notion of "tangent stack" (and geometric tangent stack) that has a well behaved tangent bundle. What can we do with this/what is left to do?

- How do tangent stacks relate to tangent fibrations?
- How can we weaken our definition of tangent 2-category, and what is the relevent coherence theorem.
- Sector form cohomology works on tangent stacks without any significant modification (differential forms on stacks are hard!).