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Introduction

Grothendieck n-groupoids are a globular model for weak n-groupoids, for
0 ≤ n ≤ ∞. They are presented as presheaves on suitable contractible theories
satisfying a Segal condition on the nose.

The generalized Homotopy Hypothesis states that n-groupoids (in the weak
sense) are essentially the same thing as homotopy n-types i.e. spaces whose
homotopy groups vanish above dimension n.
This can be made precise by asserting the existence of an equivalence between
the (∞, 1) categories that they present.
This is a theorem if we encode weak n-groupoids as n-truncated Kan
complexes, i.e. Kan complexes K for which K(x , y) is an n − 1-type.
Proving this conjecture in the case of Grothendieck n-groupoids would provide
a completely algebraic model of homotopy n-types (the only known example so
far being Gray-groupoids, due to Lack).
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The globe category and Θ0

Let G be the quotient of the free category on the directed graph
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under the relations σ ◦ σ = τ ◦ σ and σ ◦ τ = τ ◦ τ .
The closure of G under colimits of the form
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is denoted by Θ0, and its objects are called globular sums. If we start with
G≤n, we get Θ≤n

0 in the same way.
We think of them as being suitable gluings of globes (or cells) such as

•
����
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// • // •
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::�� •
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n-Globular Theories

An n-globular theory is a pair (C,F ), where C is a category and F : Θ≤n
0

// C
is a bijective on objects functor that preserves globular sums.
An n-globular theory is called contractible if for every k ≤ n and every pair of
parallel maps f , g : Dk

// A the following extension problem admits a solution

Dk A
f //Dk A
g
//Dk

Dk+1

τ
��

Dk

Dk+1

σ
��

Dk+1

A

%

??

An n-globular theory C is called cellular if there exists a cocontinuous functor
C̄ : γ // GlThn, where γ is an ordinal, such that C̄(β + 1) is obtained from
C̄(β) by universally adding solutions to a family of lifting problems as above
and, moreover, C̄(0) = Θ≤n

0 and colimβ∈γ C̄(β) ∼= C.
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n-Coherators and n-groupoids

An n-coherator is a contractible and cellular n-globular theory.

An n-groupoid (of type C) is a presheaf of sets X : Cop // Set that commutes
with globular products (Segal condition). This category will be denoted by
Mod(C), or simply by n-Gpd.

By an appropriate modi�cation of the notion of contractibility, one can model
in an analogous way (n, k) categories.

Edoardo Lanari Institute of Mathematics CAS, Prague

The generalized Homotopy Hypothesis



n-Coherators and n-groupoids

An n-coherator is a contractible and cellular n-globular theory.

An n-groupoid (of type C) is a presheaf of sets X : Cop // Set that commutes
with globular products (Segal condition). This category will be denoted by
Mod(C), or simply by n-Gpd.

By an appropriate modi�cation of the notion of contractibility, one can model
in an analogous way (n, k) categories.

Edoardo Lanari Institute of Mathematics CAS, Prague

The generalized Homotopy Hypothesis



n-Coherators and n-groupoids

An n-coherator is a contractible and cellular n-globular theory.

An n-groupoid (of type C) is a presheaf of sets X : Cop // Set that commutes
with globular products (Segal condition). This category will be denoted by
Mod(C), or simply by n-Gpd.

By an appropriate modi�cation of the notion of contractibility, one can model
in an analogous way (n, k) categories.

Edoardo Lanari Institute of Mathematics CAS, Prague

The generalized Homotopy Hypothesis



Algebraic structure

Given an n-groupoid X , where do all the operations and coherences on the
k-cells arise from? The answer is contractibility!
Some examples:

D0 D1
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i0◦σ //D0 D1

∐
D0
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(1
∐
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//D1 D1
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55

% represents binary composition of 1-cells, ω witness the existence of
codimension 1 inverses for 2-cells and a is the associativity constraint for two
possible way of composing a triple of compatible 1-cells.
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Homotopy theory of n-groupoids

Given an n-groupoid X we set π0(X ) = X0/ ∼, where a ∼ b i�
∃f ∈ X1, f : a // b.
Given k ≤ n and g ∈ Xk−1, we de�ne πk(X , g) = {h ∈ Xk , h : g // g}/ ∼,
where h ∼ h′ i� ∃H ∈ Xk+1, H : h // h′.
A map f : X // Y between n-groupoids is said to be a weak equivalence if it
induces bijections

π0(f ) : π0(X ) // π0(Y ) and πk(f , α) : πk(X , α) // πk(Y , α)

for every k ≤ n and every α ∈ Xk−1.
The pair (n-Gpd,Wn), where Wn is the class of equivalences we have just
de�ned, is a relative category and thus de�nes an (∞, 1)-category of
n-groupoids.

n-Gpd
|•|
&&

Π≤n

ff ⊥ Topn

with Topn being the relative category of homotopy n-types and
Π≤n(X )k = Top(Dk ,X ).
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The homotopy hypothesis

The Homotopy Hypothesis is the statement that

Π≤n : n-Gpd→ Topn

induces an equivalence of the associated (∞, 1)-categories.
The (∞, 1)-category Topn of homotopy n-types has a universal property: it is
the free cocomplete (∞, 1)-category on an n-truncated object.
More precisely, to give a cocontinuous ∞-functor Topn → E where E is

cocomplete is the same as giving an object e ∈ E with e
'→ eS

n+1
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Semi-model structure

By analogy with topological spaces and the Kan-Quillen model structure on
simplicial sets, it makes sense to de�ne the set of generating co�brations
(resp.trivial co�brations) to be given by, respectively:

I = {∂k : Sk−1 // Dk}k≤n+1

J = {σk : Dk
// Dk+1}k<n

The hard bit is proving the pushout-lemma, i.e. that pushouts of maps in J are
weak equivalences.

Theorem (Henry)

If the pushout lemma holds between �nitely cellular ∞-groupoids, then the

homotopy hypothesis holds true.

The strategy of the proof is to generalize the result for ∞-groupoids of the �rst
author to the case of n-groupoids.

Edoardo Lanari Institute of Mathematics CAS, Prague

The generalized Homotopy Hypothesis



Semi-model structure

By analogy with topological spaces and the Kan-Quillen model structure on
simplicial sets, it makes sense to de�ne the set of generating co�brations
(resp.trivial co�brations) to be given by, respectively:

I = {∂k : Sk−1 // Dk}k≤n+1

J = {σk : Dk
// Dk+1}k<n

The hard bit is proving the pushout-lemma, i.e. that pushouts of maps in J are
weak equivalences.

Theorem (Henry)

If the pushout lemma holds between �nitely cellular ∞-groupoids, then the

homotopy hypothesis holds true.

The strategy of the proof is to generalize the result for ∞-groupoids of the �rst
author to the case of n-groupoids.

Edoardo Lanari Institute of Mathematics CAS, Prague

The generalized Homotopy Hypothesis



Truncated and coskeletal models

De�nition

A globular set X is called n-truncated if for each pair of k-cells x , y in X
with k ≥ n one has:

X (x , y) =

{
1 x = y

∅ x 6= y

A globular set X is called n-coskeletal if for each pair of parallel k-cells
x ‖ y in X with k ≥ n one has:

X (x , y) = 1

Clearly, n-truncated globular sets are n + 1-coskeletal. We denote by
Mod(C)coskn the category of C-models whose underlying globular set is
n-coskeletal. Analogously, Mod(C)n−tr will denote the category of C-models
whose underlying globular set is n-truncated.
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Cellularity

To adapt the machinery used in the case of ∞-groupoids we need a cellular
model for n-groupoids, i.e. one whose construction does not involve identifying
operations in top dimension.
Given a coherator for ∞-groupoids C, we can consider an n-globular theory
C≤n, whose de�ning tower is obtained by adding the same operations that were
added to get C, up to dimension n.

Proposition

There are equivalence of categories of the form:

Mod(C)coskn ' Mod(C≤n)

Mod(C)n−tr ' n-Gpd

The �rst one sends an n-coskeletal model to its restriction to cells of dimension

smaller than or equal to n. The second one acts by restriction on cells of

dimension strictly smaller than n, and acts by quotienting n-cells by n + 1-cells
in top dimension.
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added to get C, up to dimension n.

Proposition

There are equivalence of categories of the form:

Mod(C)coskn ' Mod(C≤n)

Mod(C)n−tr ' n-Gpd

The �rst one sends an n-coskeletal model to its restriction to cells of dimension

smaller than or equal to n. The second one acts by restriction on cells of

dimension strictly smaller than n, and acts by quotienting n-cells by n + 1-cells
in top dimension.
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The adjunction

Proposition

There is an adjunction of the form:

Mod(C)coskn+1

tn

**

in

jj ⊥ Mod(C)n−tr ' n-Gpd

where

(tnX )k =

{
Xk k < n

Xn/ ∼ k ≥ n

One can de�ne two classes W,W ′ of weak equivalences in Mod(C)coskn+1 . W is
the restriction of the class of weak equivalcences of ∞-groupoids, and W ′ is
simply pulled back from n-groupoids along tn. We get the following result:

Theorem

The two classes W and W ′ coincide. Moreover, tn is an equivalence of relative

categories.
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The canonical left semi-model structure and the homotopy hypothesis

If the left semi-model structure on n-groupoids with the previously described
generating (trivial) co�brations exists, we call it the canonical left semi-model
structure.

Theorem

Assuming the canonical left semi-model structure on n-Gpd exists, there exists

a co�brantly generated left semi-model structure on the category

Mod(C )cosk(n+1)
of (n + 1)-coskeletal ∞-groupoids, and the previous adjunction

is a Quillen equivalence with respect to these semi-model structures. Moreover,

in this case these equivalent model structures present the (∞, 1)-category of

homotopy n-types.

Corollary

Since the canonical left semi-model structure exists in dimension n = 3, the
homotopy hypothesis holds true for n = 3. In particular, Grothendieck

3-groupoids model homotopy 3-types.
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Strategy for the pushout lemma

Since it all boils down to proving that pushout of maps of the form
σk : Dk → Dk+1 are weak equivalences, this problem is worth focusing on. A
su�cient condition is that of (less) than a path object.

Proposition (L.)

If for every co�brant n-groupoid X there exists a �bration ev : PX → X × X
such that evi = πi ◦ ev is a trivial �bration for i = 0, 1, where πi : X × X → X
denote the product projections, then the pushout lemma is valid and the

canonical model structure on n-groupoids exists.

A good candidate is: PXk
def
= n-Gpd(Cyl(Dk),X ), and we have the following

result:

Proposition (L.)

If PX is endowed with an n-groupoid structure compatible with the projections

to X , then ev : PX → X ×X is a �bration and evi = πi ◦ ev is a trivial �bration

for i = 0, 1.
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Thanks for your attention!
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