Exponentiability in Double Categories and the Glueing Construction

Susan Niefield

Union College Schenectady, NY

July 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Idea

What are the "exponentiable" objects Y in a double category

$$\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \xrightarrow{\odot} \mathbb{D}_1 \xrightarrow{s \\ \underbrace{\leftarrow \operatorname{id}}^{\bullet} \xrightarrow{}} \mathbb{D}_0$$
?

For Cat, Pos, Top, Loc, and Topos, can show directly:

Y is exponentiable in $\mathbb{D} \iff Y$ is exponentiable \mathbb{D}_0

Showed they satisfy $\mathbb{D}_1\simeq\mathbb{D}_0/2,$ generalizing Artin-Wraith glueing. [N 2012; JPAA]

Goal

To prove:

Y is exponentiable in $\mathbb{D}\iff Y$ is exponentiable in \mathbb{D}_0 in a general theorem assuming $\mathbb{D}_1\simeq \mathbb{D}_0/2$ plus ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Plan

- 1. Double categories and the examples
- 2. Glueing categories
- 3. Lax Functors and Adjoints
- 4. Exponentiability in double categories

Double Categories

A double category \mathbb{D} is a (pseudo) category object in CAT

$$\mathbb{D}_1 \times_{\mathbb{D}_0} \mathbb{D}_1 \xrightarrow{\odot} \mathbb{D}_1 \xrightarrow{s} \mathbb{D}_0$$

Objects: objects of \mathbb{D}_0

Horizontal morphisms: morphisms $f: X \longrightarrow Y$ of \mathbb{D}_0

Vertical morphism: objects of \mathbb{D}_1 , denoted by $v \colon X_s \dashrightarrow X_t$

Cells: morphisms of \mathbb{D}_1 , denoted by

$$\begin{array}{ccc} X_s \xrightarrow{f_s} Y_s \\ \downarrow & \varphi & \downarrow & w \\ X_t \xrightarrow{f_t} & Y_t \end{array}$$

Double Categories: Examples [N 2012; JPAA]

Top: top spaces X,
$$X \longrightarrow Y$$
, $X \xrightarrow{x_s \longrightarrow X_t} \mathcal{O}(X_s) \xrightarrow{\mathcal{O}} \mathcal{O}(Y_s)$
 $\xrightarrow{\text{cont maps}} \stackrel{\text{lex}}{\xrightarrow{W_t}} \mathcal{O}(X_t)$, $v \stackrel{\mathcal{O}}{\to} \stackrel{\mathcal{O}}{\to} \mathcal{O}(Y_s)$

$$\mathbb{T} \text{opos: } \mathcal{S}\text{-toposes } \mathcal{X}, \quad \underset{\text{geom. morph.}}{\mathcal{X} \to \mathcal{Y}}, \quad \underset{\text{lex}}{\mathcal{X}_s \to \mathcal{X}_t}, \quad \underset{t_s}{\overset{\mathcal{X}_s \to \mathcal{Y}_s}{\overset{t_s \to \mathcal{Y}_s}}}}}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Double Categories: Examples (cont.)

Glueing Categories

(G1) \mathbb{D}_0 has finite limits

(G2) $\operatorname{id}^{\bullet} \colon \mathbb{D}_{0} \longrightarrow \mathbb{D}_{1}$ has a left adjoint Γ with unit

$$\begin{array}{cccc} X_s & \stackrel{i_s}{\longrightarrow} & \Gamma \mathbf{v} \\ v & \downarrow & \gamma_v & \downarrow^{\mathrm{id}_{\Gamma_v}} & \text{``cotabulator''} \\ X_t & \stackrel{>}{\longrightarrow} & \Gamma \mathbf{v} \end{array}$$

(G3) $\Gamma_2 \colon \mathbb{D}_1 \longrightarrow \mathbb{D}_0/2$ is an equivalence, where $2 = \Gamma(\operatorname{id}_1^{\bullet})$, and the following are pullbacks in \mathbb{D}_0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(G4) D is "horizontally invariant"

Glueing Categories: Examples

Top: Given $v : \mathcal{O}(X_s) \dashrightarrow \mathcal{O}(X_t)$, define $\Gamma v = X_s \sqcup X_t$ with $U = U_s \sqcup U_t$ open, if U_s , U_t are open and $U_t \subseteq v(U_s)$ 2 is the Sierpinski space

Loc: Γv defined by "Artin-Wraith glueing" along v2 is the Sierpinski locale $\mathcal{O}(2)$

Topos: Γv defined by "Artin-Wraith glueing" along v2 is the Sierpinski topos S^2

Glueing Categories: Examples, cont.

Cat: Γv is the "collage" of the profunctor v $|\Gamma v| = |X_s| \sqcup |X_t|$, morphisms in X_s , X_t , and via v2 is the arrow category

Pos: Γv is the "collage" of the ideal v

2 is the non-discrete 2-point poset

Note

Companions and conjoints are used for Γ_2^{-1} in the examples, but not in general, so they are not part of glueing categories.

Lax Functors

Definition

A lax functor $F : \mathbb{D} \to \mathbb{E}$ consists of functors $F_0 : \mathbb{D}_0 \to \mathbb{E}_0$ and $F_1 : \mathbb{D}_1 \to \mathbb{E}_1$ compatible with *s* and *t*, and cells

$$\operatorname{id}_{F_0X}^{\bullet} \longrightarrow F_1(\operatorname{id}_X^{\bullet}) \quad \text{and} \quad F_1w \odot F_1v \longrightarrow F_1(w \odot v)$$

satisfying naturality and coherence conditions.

Oplax and pseudo functors are defined with the cells in the opposite direction and invertible, respectively.

Get a 2-category LxDbl of double categories and lax functors.

Note Why LxDbl?

Adjoints in **LxDbl**

Lemma (Grandis/Paré 2004)

The following are equivalent for a lax functor $F : \mathbb{D} \longrightarrow \mathbb{E}$, and functors $G_0 : \mathbb{E}_0 \longrightarrow \mathbb{D}_0$ and $G_1 : \mathbb{E}_1 \longrightarrow \mathbb{D}_1$ compatible with s, t.

Definition (Aleiferi 2018)

 \mathbb{D} is pre-cartesian (cartesian) if $\mathbb{D} \xrightarrow{\Delta} \mathbb{D} \times \mathbb{D}$ and $\mathbb{D} \xrightarrow{!} \mathbb{1}$ have (pseudo) right adoints \times and 1.

Proposition

Every glueing category is pre-cartesian.

Proof.

 Δ , ! are pseudo, and $\mathbb{D}_1 \simeq \mathbb{D}_0/2$ has finite limits since \mathbb{D}_0 does.

Exponentiability in Pre-cartesian Double Categories

Definition

An object Y is pre-exponentiable in \mathbb{D} if the lax functor - \times Y: $\mathbb{D} \longrightarrow \mathbb{D}$ has a right adjoint in **LxDbl**, and \mathbb{D} is pre-cartesian closed if every object is pre-exponentiable.

Theorem

If Y is pre-exponentiable in \mathbb{D} , then $- \times Y$ is oplax and Y is exponentiable in \mathbb{D}_0 . The converse holds, if \mathbb{D} is a glueing category.

Proof.

By the Lemma, Y is pre-exp iff $- \times Y$ is oplax and Y, $\operatorname{id}_Y^{\bullet}$ are exp in $\mathbb{D}_0, \mathbb{D}_1$, resp. But, $\operatorname{id}_Y^{\bullet} \mapsto (Y \times 2 \twoheadrightarrow 2)$ via $\mathbb{D}_1 \simeq \mathbb{D}_0/2$, which is exp in \mathbb{D}_1 when Y is exp in in \mathbb{D}_0 , and so the result follows. \Box

Note

For Proposition and Theorem, horizontal invariance of \mathbb{D} is used to show compatibility with s, t required in the Lemma.

Exponentiability: Examples

From [N, 2012; TAC]: $- \times Y$ is pseudo, if Y is exponentiable in \mathbb{D}_0 , for $\mathbb{D} = \mathbb{C}$ at, \mathbb{P} os, \mathbb{T} op, \mathbb{L} oc, \mathbb{T} opos, and so for these \mathbb{D} :

Corollary

Y is pre-exponentiable in $\mathbb{D} \iff Y$ is exponentiable in \mathbb{D}_0 . In particular, \mathbb{C} at and \mathbb{P} os are pre-cartesian closed.

Note

In [N 2012; TAC], we assumed more, i.e., \mathbb{D} is fibrant.

What can we add to (G1) - (G4) so that $- \times Y$ will be oplax for all glueing categories? How can we deal with \odot ?

Exponentiability: Examples, cont.

Suppose \mathbb{D}_0 has pushouts and consider the pushout 3

where i_{02} is induced by vertically pasting along $i_1 = i_{12}i_s = i_{01}i_t$.

・ロト・(四ト・(日下・(日下・))の(の)

Exponentiability: Examples, cont.

The diagram below induces a morphism j s.t. (*) is commutative.

Definition

We say \mathbb{D} has the 02-pullback condition if \mathbb{D}_0 has pushouts and (*) is a pullback, for all $X_s \xrightarrow{v} X_t \xrightarrow{w} X_u$.

Note

 $\mathbb{C}\mathrm{at}, \mathbb{P}\mathrm{os}, \mathbb{T}\mathrm{op}, \mathbb{L}\mathrm{oc},$ and $\mathbb{T}\mathrm{opos}$ satisfy the 02-pullback condition.

Exponentiability: Examples, cont.

Corollary

Suppose \mathbb{D} is a glueing category with the 02-pullback condition. Y is pre-exponentiable in $\mathbb{D} \iff Y$ is exponentiable in \mathbb{D}_0

Proof. (Sketch)

It suffice to show $\Gamma \varphi$ is iso, for $(w \times Y) \odot (v \times Y) \xrightarrow{\varphi} (w \odot v) \times Y$.

- E. Aleiferi, Cartesian Double Categories with an Emphasis on Characterizing Spans, Ph.D. Thesis, Dalhousie University, 2018 (https://arxiv.org/abs/1809.06940).
- M. Grandis and R. Paré, Adjoints for double categories, Cahiers de Top. et Géom. Diff. Catég. 45 (2004), 193–240.
- S. B. Niefield, The glueing construction and double categories, J. Pure Appl. Algebra 216 (2012), 1827–1836.
- ► S. B. Niefield, Exponentiability via double categories, Theory Appl. Categ. 27, (2012), 10–26.