
Graphical abelian logic

David I. Spivak∗ and Brendan Fong

July 11, 2019

0 / 17

Introduction

Outline

1 Introduction
Abelian categories
Plan for the talk

2 Graphical language for abelian categories

3 The 2-reflection

4 Conclusion

0 / 17

Introduction Abelian categories

Abelian categories

Definition

A category A is abelian if

it has a zero object 0;

every pair of objects has a product and a coproduct;

every morphism has a kernel and a cokernel; and

every monomorphism is a kernel and every epimorphism is a cokernel.

This is a standard definition; we’ll see a graphical presentation soon.

Examples: Ab, fgAb, VectR, sheaves of abelian groups on a space,

1 / 17

Introduction Abelian categories

Abelian categories

Definition

A category A is abelian if

it has a zero object 0;

every pair of objects has a product and a coproduct;

every morphism has a kernel and a cokernel; and

every monomorphism is a kernel and every epimorphism is a cokernel.

This is a standard definition; we’ll see a graphical presentation soon.

Examples: Ab, fgAb,

VectR, sheaves of abelian groups on a space,

1 / 17

Introduction Abelian categories

Abelian categories

Definition

A category A is abelian if

it has a zero object 0;

every pair of objects has a product and a coproduct;

every morphism has a kernel and a cokernel; and

every monomorphism is a kernel and every epimorphism is a cokernel.

This is a standard definition; we’ll see a graphical presentation soon.

Examples: Ab, fgAb, VectR,

sheaves of abelian groups on a space,

1 / 17

Introduction Abelian categories

Abelian categories

Definition

A category A is abelian if

it has a zero object 0;

every pair of objects has a product and a coproduct;

every morphism has a kernel and a cokernel; and

every monomorphism is a kernel and every epimorphism is a cokernel.

This is a standard definition; we’ll see a graphical presentation soon.

Examples: Ab, fgAb, VectR, sheaves of abelian groups on a space,

1 / 17

Introduction Abelian categories

Why abelian categories are beloved

Abelian cats A are beloved because they are good for computation.

A has biproducts! i.e. the canonical map A t B → A× B is iso.

It follows that morphisms in A can be assembled into matrices.
Composition is matrix mult., biproduct is “block diagonal”.

For every object A ∈ A, the subobjects form a lattice Sub(A).

Sub(A) has meets (∧) “intersection”, top (>) “all of A”,

joins (∨) “span”, and bottom (⊥) “zero”

Every morphism f : A→ B in A has an image A � im(f) � B.

Biggest math application: homological algebra can be done in A.

A chain complex in A is a sequence of maps, s.t. wherever you look

· · · → A
f−→ B

g−→ C → · · ·

you have im(f) ⊆ ker(g). Then the homology there is ker(g)/ im(f).

2 / 17

Introduction Abelian categories

Why abelian categories are beloved

Abelian cats A are beloved because they are good for computation.

A has biproducts! i.e. the canonical map A t B → A× B is iso.

It follows that morphisms in A can be assembled into matrices.
Composition is matrix mult., biproduct is “block diagonal”.

For every object A ∈ A, the subobjects form a lattice Sub(A).

Sub(A) has meets (∧) “intersection”, top (>) “all of A”,

joins (∨) “span”, and bottom (⊥) “zero”

Every morphism f : A→ B in A has an image A � im(f) � B.

Biggest math application: homological algebra can be done in A.

A chain complex in A is a sequence of maps, s.t. wherever you look

· · · → A
f−→ B

g−→ C → · · ·

you have im(f) ⊆ ker(g). Then the homology there is ker(g)/ im(f).

2 / 17

Introduction Abelian categories

Why abelian categories are beloved

Abelian cats A are beloved because they are good for computation.

A has biproducts! i.e. the canonical map A t B → A× B is iso.

It follows that morphisms in A can be assembled into matrices.
Composition is matrix mult., biproduct is “block diagonal”.

For every object A ∈ A, the subobjects form a lattice Sub(A).

Sub(A) has meets (∧) “intersection”, top (>) “all of A”,

joins (∨) “span”, and bottom (⊥) “zero”

Every morphism f : A→ B in A has an image A � im(f) � B.

Biggest math application: homological algebra can be done in A.

A chain complex in A is a sequence of maps, s.t. wherever you look

· · · → A
f−→ B

g−→ C → · · ·

you have im(f) ⊆ ker(g). Then the homology there is ker(g)/ im(f).

2 / 17

Introduction Abelian categories

Why abelian categories are beloved

Abelian cats A are beloved because they are good for computation.

A has biproducts! i.e. the canonical map A t B → A× B is iso.

It follows that morphisms in A can be assembled into matrices.
Composition is matrix mult., biproduct is “block diagonal”.

For every object A ∈ A, the subobjects form a lattice Sub(A).

Sub(A) has meets (∧) “intersection”, top (>) “all of A”,

joins (∨) “span”, and bottom (⊥) “zero”

Every morphism f : A→ B in A has an image A � im(f) � B.

Biggest math application: homological algebra can be done in A.

A chain complex in A is a sequence of maps, s.t. wherever you look

· · · → A
f−→ B

g−→ C → · · ·

you have im(f) ⊆ ker(g). Then the homology there is ker(g)/ im(f).

2 / 17

Introduction Abelian categories

Why abelian categories are beloved

Abelian cats A are beloved because they are good for computation.

A has biproducts! i.e. the canonical map A t B → A× B is iso.

It follows that morphisms in A can be assembled into matrices.
Composition is matrix mult., biproduct is “block diagonal”.

For every object A ∈ A, the subobjects form a lattice Sub(A).

Sub(A) has meets (∧) “intersection”, top (>) “all of A”,

joins (∨) “span”, and bottom (⊥) “zero”

Every morphism f : A→ B in A has an image A � im(f) � B.

Biggest math application: homological algebra can be done in A.

A chain complex in A is a sequence of maps, s.t. wherever you look

· · · → A
f−→ B

g−→ C → · · ·

you have im(f) ⊆ ker(g). Then the homology there is ker(g)/ im(f).

2 / 17

Introduction Plan for the talk

Plan for the talk

In this talk, I’ll discuss abelian categories from a totally different angle.

Usual perspective: a category with four axioms.

Graphical perspective: the syntactic category of a graphical language.

Plan:

Show pictures of the graphical language in action for f.g. ab. groups

Explain what these pictures mean.

Explain the main theorem—stated below—and finally conclude.

Theorem (Fong-S.)

Abelian categories are reflective in the 2-category of abelian calculi,

AbCalc AbCat.
Syn

Prd

⇒

In particular for A ∈ AbCat, the unit A
∼=−→ SynPrd(A) is an equivalence.

3 / 17

Introduction Plan for the talk

Plan for the talk

In this talk, I’ll discuss abelian categories from a totally different angle.

Usual perspective: a category with four axioms.

Graphical perspective: the syntactic category of a graphical language.

Plan:

Show pictures of the graphical language in action for f.g. ab. groups

Explain what these pictures mean.

Explain the main theorem—stated below—and finally conclude.

Theorem (Fong-S.)

Abelian categories are reflective in the 2-category of abelian calculi,

AbCalc AbCat.
Syn

Prd

⇒

In particular for A ∈ AbCat, the unit A
∼=−→ SynPrd(A) is an equivalence.

3 / 17

Introduction Plan for the talk

Plan for the talk

In this talk, I’ll discuss abelian categories from a totally different angle.

Usual perspective: a category with four axioms.

Graphical perspective: the syntactic category of a graphical language.

Plan:

Show pictures of the graphical language in action for f.g. ab. groups

Explain what these pictures mean.

Explain the main theorem—stated below—and finally conclude.

Theorem (Fong-S.)

Abelian categories are reflective in the 2-category of abelian calculi,

AbCalc AbCat.
Syn

Prd

⇒

In particular for A ∈ AbCat, the unit A
∼=−→ SynPrd(A) is an equivalence.

3 / 17

Introduction Plan for the talk

Plan for the talk

In this talk, I’ll discuss abelian categories from a totally different angle.

Usual perspective: a category with four axioms.

Graphical perspective: the syntactic category of a graphical language.

Plan:

Show pictures of the graphical language in action for f.g. ab. groups

Explain what these pictures mean.

Explain the main theorem—stated below—and finally conclude.

Theorem (Fong-S.)

Abelian categories are reflective in the 2-category of abelian calculi,

AbCalc AbCat.
Syn

Prd

⇒

In particular for A ∈ AbCat, the unit A
∼=−→ SynPrd(A) is an equivalence.

3 / 17

Introduction Plan for the talk

Plan for the talk

In this talk, I’ll discuss abelian categories from a totally different angle.

Usual perspective: a category with four axioms.

Graphical perspective: the syntactic category of a graphical language.

Plan:

Show pictures of the graphical language in action for f.g. ab. groups

Explain what these pictures mean.

Explain the main theorem—stated below—and finally conclude.

Theorem (Fong-S.)

Abelian categories are reflective in the 2-category of abelian calculi,

AbCalc AbCat.
Syn

Prd

⇒

In particular for A ∈ AbCat, the unit A
∼=−→ SynPrd(A) is an equivalence.

3 / 17

Graphical language for abelian categories

Outline

1 Introduction

2 Graphical language for abelian categories
Graphical languages in category theory
Introducing abelian relations
Abelian relations in action
The backbone of the graphical language
An abelian calculus for fgAb
The syntactic category of an abelian calculus

3 The 2-reflection

4 Conclusion

3 / 17

Graphical language for abelian categories Graphical languages in category theory

Graphical languages in category theory

String diagrams for (traced) monoidal categories were invented by Joyal
and Street (and Verity).

Defined in terms of topological spaces and homotopies.

See Selinger’s “A survey of graphical languages for monoidal cats”

Can also be defined combinatorially using lax monoidal functors.

Lax functors Cob→ Set give traced monoidal categories.

Lax monoidal functors Cospan→ Set give hypergraph categories.

Brendan talked about how to get regular categories this way.

Today: abelian categories this way.

4 / 17

Graphical language for abelian categories Graphical languages in category theory

Graphical languages in category theory

String diagrams for (traced) monoidal categories were invented by Joyal
and Street (and Verity).

Defined in terms of topological spaces and homotopies.

See Selinger’s “A survey of graphical languages for monoidal cats”

Can also be defined combinatorially using lax monoidal functors.

Lax functors Cob→ Set give traced monoidal categories.

Lax monoidal functors Cospan→ Set give hypergraph categories.

Brendan talked about how to get regular categories this way.

Today: abelian categories this way.

4 / 17

Graphical language for abelian categories Graphical languages in category theory

Graphical languages in category theory

String diagrams for (traced) monoidal categories were invented by Joyal
and Street (and Verity).

Defined in terms of topological spaces and homotopies.

See Selinger’s “A survey of graphical languages for monoidal cats”

Can also be defined combinatorially using lax monoidal functors.

Lax functors Cob→ Set give traced monoidal categories.

Lax monoidal functors Cospan→ Set give hypergraph categories.

Brendan talked about how to get regular categories this way.

Today: abelian categories this way.

4 / 17

Graphical language for abelian categories Graphical languages in category theory

Graphical languages in category theory

String diagrams for (traced) monoidal categories were invented by Joyal
and Street (and Verity).

Defined in terms of topological spaces and homotopies.

See Selinger’s “A survey of graphical languages for monoidal cats”

Can also be defined combinatorially using lax monoidal functors.

Lax functors Cob→ Set give traced monoidal categories.

Lax monoidal functors Cospan→ Set give hypergraph categories.

Brendan talked about how to get regular categories this way.

Today: abelian categories this way.

4 / 17

Graphical language for abelian categories Graphical languages in category theory

Graphical languages in category theory

String diagrams for (traced) monoidal categories were invented by Joyal
and Street (and Verity).

Defined in terms of topological spaces and homotopies.

See Selinger’s “A survey of graphical languages for monoidal cats”

Can also be defined combinatorially using lax monoidal functors.

Lax functors Cob→ Set give traced monoidal categories.

Lax monoidal functors Cospan→ Set give hypergraph categories.

Brendan talked about how to get regular categories this way.

Today: abelian categories this way.

4 / 17

Graphical language for abelian categories Introducing abelian relations

Introducing the po-prop of abelian relations

We will be discussing a graphical syntax for abelian categories.

The graphical syntax is governed by a certain kind of monoidal theory.

A prop is a strict monoidal category whose object monoid is (N, 0,+).

A po-prop P is a locally-posetal version: P(m, n) ∈ Poset.

Think of the maps in P as icons we can use in our graphical language.

The po-prop A of abelian relations has eight generating 1-morphisms:

ε∗ δ∗η∗ µ∗

ε! δ!η! µ!

Intuition: icons m→ n are maps between subsp’s of Rm and subsp’s of Rn

All come in adjoint pairs;

η is “0”, µ is “+”, ε is “everything”, δ is “equality”; as for Pawel.

Example: ε! projects onto a coordinate plane, η∗ intersects with it.

5 / 17

Graphical language for abelian categories Introducing abelian relations

Introducing the po-prop of abelian relations

We will be discussing a graphical syntax for abelian categories.

The graphical syntax is governed by a certain kind of monoidal theory.

A prop is a strict monoidal category whose object monoid is (N, 0,+).

A po-prop P is a locally-posetal version: P(m, n) ∈ Poset.

Think of the maps in P as icons we can use in our graphical language.

The po-prop A of abelian relations has eight generating 1-morphisms:

ε∗ δ∗η∗ µ∗

ε! δ!η! µ!

Intuition: icons m→ n are maps between subsp’s of Rm and subsp’s of Rn

All come in adjoint pairs;

η is “0”, µ is “+”, ε is “everything”, δ is “equality”; as for Pawel.

Example: ε! projects onto a coordinate plane, η∗ intersects with it.

5 / 17

Graphical language for abelian categories Introducing abelian relations

Introducing the po-prop of abelian relations

We will be discussing a graphical syntax for abelian categories.

The graphical syntax is governed by a certain kind of monoidal theory.

A prop is a strict monoidal category whose object monoid is (N, 0,+).

A po-prop P is a locally-posetal version: P(m, n) ∈ Poset.

Think of the maps in P as icons we can use in our graphical language.

The po-prop A of abelian relations has eight generating 1-morphisms:

ε∗ δ∗η∗ µ∗

ε! δ!η! µ!

Intuition: icons m→ n are maps between subsp’s of Rm and subsp’s of Rn

All come in adjoint pairs;

η is “0”, µ is “+”, ε is “everything”, δ is “equality”; as for Pawel.

Example: ε! projects onto a coordinate plane, η∗ intersects with it.

5 / 17

Graphical language for abelian categories Introducing abelian relations

Introducing the po-prop of abelian relations

We will be discussing a graphical syntax for abelian categories.

The graphical syntax is governed by a certain kind of monoidal theory.

A prop is a strict monoidal category whose object monoid is (N, 0,+).

A po-prop P is a locally-posetal version: P(m, n) ∈ Poset.

Think of the maps in P as icons we can use in our graphical language.

The po-prop A of abelian relations has eight generating 1-morphisms:

ε∗ δ∗η∗ µ∗

ε! δ!η! µ!

Intuition: icons m→ n are maps between subsp’s of Rm and subsp’s of Rn

All come in adjoint pairs;

η is “0”, µ is “+”, ε is “everything”, δ is “equality”; as for Pawel.

Example: ε! projects onto a coordinate plane, η∗ intersects with it.

5 / 17

Graphical language for abelian categories Introducing abelian relations

Introducing the po-prop of abelian relations

We will be discussing a graphical syntax for abelian categories.

The graphical syntax is governed by a certain kind of monoidal theory.

A prop is a strict monoidal category whose object monoid is (N, 0,+).

A po-prop P is a locally-posetal version: P(m, n) ∈ Poset.

Think of the maps in P as icons we can use in our graphical language.

The po-prop A of abelian relations has eight generating 1-morphisms:

ε∗ δ∗η∗ µ∗

ε! δ!η! µ!

Intuition: icons m→ n are maps between subsp’s of Rm and subsp’s of Rn

All come in adjoint pairs;

η is “0”, µ is “+”, ε is “everything”, δ is “equality”; as for Pawel.

Example: ε! projects onto a coordinate plane, η∗ intersects with it.

5 / 17

Graphical language for abelian categories Introducing abelian relations

Introducing the po-prop of abelian relations

We will be discussing a graphical syntax for abelian categories.

The graphical syntax is governed by a certain kind of monoidal theory.

A prop is a strict monoidal category whose object monoid is (N, 0,+).

A po-prop P is a locally-posetal version: P(m, n) ∈ Poset.

Think of the maps in P as icons we can use in our graphical language.

The po-prop A of abelian relations has eight generating 1-morphisms:

ε∗ δ∗η∗ µ∗

ε! δ!η! µ!

Intuition: icons m→ n are maps between subsp’s of Rm and subsp’s of Rn

All come in adjoint pairs;

η is “0”, µ is “+”, ε is “everything”, δ is “equality”; as for Pawel.

Example: ε! projects onto a coordinate plane, η∗ intersects with it.

5 / 17

Graphical language for abelian categories Introducing abelian relations

Introducing the po-prop of abelian relations

We will be discussing a graphical syntax for abelian categories.

The graphical syntax is governed by a certain kind of monoidal theory.

A prop is a strict monoidal category whose object monoid is (N, 0,+).

A po-prop P is a locally-posetal version: P(m, n) ∈ Poset.

Think of the maps in P as icons we can use in our graphical language.

The po-prop A of abelian relations has eight generating 1-morphisms:

ε∗ δ∗η∗ µ∗

ε! δ!η! µ!

Intuition: icons m→ n are maps between subsp’s of Rm and subsp’s of Rn

All come in adjoint pairs;

η is “0”, µ is “+”, ε is “everything”, δ is “equality”; as for Pawel.

Example: ε! projects onto a coordinate plane, η∗ intersects with it.
5 / 17

Graphical language for abelian categories Abelian relations in action

Some terms in the graphical language

Given a map f : X → Y , its cokernel and kernel are canonical maps:

Cokernel: Y � Y / im(f). “Add im(f)-valued noise to data in Y .”

Kernel: {x : X | f (x) = 0}� X . “Select data in X with null f .”

In pictures...

f : X → Y ,
cokernel
and kernel:

f
X Y

Y

Y → coker(f)

f
YX

X

ker(f)→ X

Snake lemma
connecting
homomorphism:

ker h

A1 B1 C1 0

0 A2 B2 C2

cokerf

i1

f

j1

g h

i2 j2

j1

i2

g hf

one can prove graphically that
this relation is a left adjoint

6 / 17

Graphical language for abelian categories Abelian relations in action

Some terms in the graphical language

Given a map f : X → Y , its cokernel and kernel are canonical maps:

Cokernel: Y � Y / im(f). “Add im(f)-valued noise to data in Y .”

Kernel: {x : X | f (x) = 0}� X . “Select data in X with null f .”

In pictures...

f : X → Y ,
cokernel
and kernel:

f
X Y

Y

Y → coker(f)

f
YX

X

ker(f)→ X

Snake lemma
connecting
homomorphism:

ker h

A1 B1 C1 0

0 A2 B2 C2

cokerf

i1

f

j1

g h

i2 j2

j1

i2

g hf

one can prove graphically that
this relation is a left adjoint

6 / 17

Graphical language for abelian categories Abelian relations in action

Some terms in the graphical language

Given a map f : X → Y , its cokernel and kernel are canonical maps:

Cokernel: Y � Y / im(f). “Add im(f)-valued noise to data in Y .”

Kernel: {x : X | f (x) = 0}� X . “Select data in X with null f .”

In pictures...

f : X → Y ,
cokernel
and kernel:

f
X Y

Y

Y → coker(f)

f
YX

X

ker(f)→ X

Snake lemma
connecting
homomorphism:

ker h

A1 B1 C1 0

0 A2 B2 C2

cokerf

i1

f

j1

g h

i2 j2

j1

i2

g hf

one can prove graphically that
this relation is a left adjoint

6 / 17

Graphical language for abelian categories Abelian relations in action

Some terms in the graphical language

Given a map f : X → Y , its cokernel and kernel are canonical maps:

Cokernel: Y � Y / im(f). “Add im(f)-valued noise to data in Y .”

Kernel: {x : X | f (x) = 0}� X . “Select data in X with null f .”

In pictures...

f : X → Y ,
cokernel
and kernel:

f
X Y

Y

Y → coker(f)

f
YX

X

ker(f)→ X

Snake lemma
connecting
homomorphism:

ker h

A1 B1 C1 0

0 A2 B2 C2

cokerf

i1

f

j1

g h

i2 j2

j1

i2

g hf

one can prove graphically that
this relation is a left adjoint

6 / 17

Graphical language for abelian categories Abelian relations in action

Some terms in the graphical language

Given a map f : X → Y , its cokernel and kernel are canonical maps:

Cokernel: Y � Y / im(f). “Add im(f)-valued noise to data in Y .”

Kernel: {x : X | f (x) = 0}� X . “Select data in X with null f .”

In pictures...

f : X → Y ,
cokernel
and kernel:

f
X Y

Y

Y → coker(f)

f
YX

X

ker(f)→ X

Snake lemma
connecting
homomorphism:

ker h

A1 B1 C1 0

0 A2 B2 C2

cokerf

i1

f

j1

g h

i2 j2

j1

i2

g hf

one can prove graphically that
this relation is a left adjoint

6 / 17

Graphical language for abelian categories Abelian relations in action

Some terms in the graphical language

Given a map f : X → Y , its cokernel and kernel are canonical maps:

Cokernel: Y � Y / im(f). “Add im(f)-valued noise to data in Y .”

Kernel: {x : X | f (x) = 0}� X . “Select data in X with null f .”

In pictures...

f : X → Y ,
cokernel
and kernel:

f
X Y

Y

Y → coker(f)

f
YX

X

ker(f)→ X

Snake lemma
connecting
homomorphism:

ker h

A1 B1 C1 0

0 A2 B2 C2

cokerf

i1

f

j1

g h

i2 j2

j1

i2

g hf

one can prove graphically that
this relation is a left adjoint

6 / 17

Graphical language for abelian categories Abelian relations in action

Some terms in the graphical language

Given a map f : X → Y , its cokernel and kernel are canonical maps:

Cokernel: Y � Y / im(f). “Add im(f)-valued noise to data in Y .”

Kernel: {x : X | f (x) = 0}� X . “Select data in X with null f .”

In pictures...

f : X → Y ,
cokernel
and kernel:

f
X Y

Y

Y → coker(f)

f
YX

X

ker(f)→ X

Snake lemma
connecting
homomorphism:

ker h

A1 B1 C1 0

0 A2 B2 C2

cokerf

i1

f

j1

g h

i2 j2

j1

i2

g hf

one can prove graphically that
this relation is a left adjoint

6 / 17

Graphical language for abelian categories The backbone of the graphical language

The po-prop of abelian relations

The po-prop A of abelian relations has eight generating 1-morphisms:

η! µ! ε! δ!

η∗ µ∗ ε∗ δ∗

such that: (η!, µ!, η
∗, µ∗) is an adjoint Frobenius monoid;

(ε!, δ!, ε
∗, µ∗) is an adjoint Frobenius comonoid,

the left (iff right) adjoints form a bimonoid, mediating isomorphism is an involution:

≤ ≤ ≤ ≤

= = =

= = =

= id0= = =

= = = =

=

Better characterization?

7 / 17

Graphical language for abelian categories The backbone of the graphical language

The po-prop of abelian relations

The po-prop A of abelian relations has eight generating 1-morphisms:

η! µ! ε! δ!

η∗ µ∗ ε∗ δ∗

such that: (η!, µ!, η
∗, µ∗) is an adjoint Frobenius monoid; (ε!, δ!, ε

∗, µ∗) is an adjoint Frobenius comonoid,

the left (iff right) adjoints form a bimonoid, mediating isomorphism is an involution:

≤ ≤ ≤ ≤

= = =

= = =

= id0= = =

= = = =

=

Better characterization?

7 / 17

Graphical language for abelian categories The backbone of the graphical language

The po-prop of abelian relations

The po-prop A of abelian relations has eight generating 1-morphisms:

η! µ! ε! δ!

η∗ µ∗ ε∗ δ∗

such that: (η!, µ!, η
∗, µ∗) is an adjoint Frobenius monoid; (ε!, δ!, ε

∗, µ∗) is an adjoint Frobenius comonoid,

the left (iff right) adjoints form a bimonoid, mediating isomorphism is an involution:

≤ ≤ ≤ ≤

= = =

= = =

= id0= = =

= = = =

=

Better characterization?

7 / 17

Graphical language for abelian categories The backbone of the graphical language

The po-prop of abelian relations

The po-prop A of abelian relations has eight generating 1-morphisms:

η! µ! ε! δ!

η∗ µ∗ ε∗ δ∗

such that: (η!, µ!, η
∗, µ∗) is an adjoint Frobenius monoid; (ε!, δ!, ε

∗, µ∗) is an adjoint Frobenius comonoid,

the left (iff right) adjoints form a bimonoid, mediating isomorphism is an involution:

≤ ≤ ≤ ≤

= = =

= = =

= id0= = =

= = = =

=

Better characterization?
7 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Drawing functors P : A→ Poset

Let A be as above; it has objects N and morphisms generated by the icons

Let Poset be the symmetric monoidal po-category where:

objects are partially ordered sets (S ,≤),

1-morphisms f : S → T are monotone functions, a.k.a. functors,

2-morphisms α : f → g are natural transformations.

Cartesian monoidal structure: unit is 1, product is ×.

Main interest: lax monoidal po-functors P : A→ Poset. What’s one do?

It assigns a poset P(n) to each object n ∈ N = Ob(A),

It assigns a monotone map P(ι) : P(m)→ P(n) for each icon ι ∈ A,

It assigns maps 1→ P(0) and P(m1)× P(m2)→ P(m1 + m2),

It obeys all equations; ineq’s ι ≤ ι′ in A sent to nat.trans. in Poset.

Let’s see one in action.

8 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Drawing functors P : A→ Poset

Let A be as above; it has objects N and morphisms generated by the icons

Let Poset be the symmetric monoidal po-category where:

objects are partially ordered sets (S ,≤),

1-morphisms f : S → T are monotone functions, a.k.a. functors,

2-morphisms α : f → g are natural transformations.

Cartesian monoidal structure: unit is 1, product is ×.

Main interest: lax monoidal po-functors P : A→ Poset. What’s one do?

It assigns a poset P(n) to each object n ∈ N = Ob(A),

It assigns a monotone map P(ι) : P(m)→ P(n) for each icon ι ∈ A,

It assigns maps 1→ P(0) and P(m1)× P(m2)→ P(m1 + m2),

It obeys all equations; ineq’s ι ≤ ι′ in A sent to nat.trans. in Poset.

Let’s see one in action.

8 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Drawing functors P : A→ Poset

Let A be as above; it has objects N and morphisms generated by the icons

Let Poset be the symmetric monoidal po-category where:

objects are partially ordered sets (S ,≤),

1-morphisms f : S → T are monotone functions, a.k.a. functors,

2-morphisms α : f → g are natural transformations.

Cartesian monoidal structure: unit is 1, product is ×.

Main interest: lax monoidal po-functors P : A→ Poset. What’s one do?

It assigns a poset P(n) to each object n ∈ N = Ob(A),

It assigns a monotone map P(ι) : P(m)→ P(n) for each icon ι ∈ A,

It assigns maps 1→ P(0) and P(m1)× P(m2)→ P(m1 + m2),

It obeys all equations; ineq’s ι ≤ ι′ in A sent to nat.trans. in Poset.

Let’s see one in action.

8 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Drawing functors P : A→ Poset

Let A be as above; it has objects N and morphisms generated by the icons

Let Poset be the symmetric monoidal po-category where:

objects are partially ordered sets (S ,≤),

1-morphisms f : S → T are monotone functions, a.k.a. functors,

2-morphisms α : f → g are natural transformations.

Cartesian monoidal structure: unit is 1, product is ×.

Main interest: lax monoidal po-functors P : A→ Poset. What’s one do?

It assigns a poset P(n) to each object n ∈ N = Ob(A),

It assigns a monotone map P(ι) : P(m)→ P(n) for each icon ι ∈ A,

It assigns maps 1→ P(0) and P(m1)× P(m2)→ P(m1 + m2),

It obeys all equations; ineq’s ι ≤ ι′ in A sent to nat.trans. in Poset.

Let’s see one in action.

8 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Drawing functors P : A→ Poset

Let A be as above; it has objects N and morphisms generated by the icons

Let Poset be the symmetric monoidal po-category where:

objects are partially ordered sets (S ,≤),

1-morphisms f : S → T are monotone functions, a.k.a. functors,

2-morphisms α : f → g are natural transformations.

Cartesian monoidal structure: unit is 1, product is ×.

Main interest: lax monoidal po-functors P : A→ Poset. What’s one do?

It assigns a poset P(n) to each object n ∈ N = Ob(A),

It assigns a monotone map P(ι) : P(m)→ P(n) for each icon ι ∈ A,

It assigns maps 1→ P(0) and P(m1)× P(m2)→ P(m1 + m2),

It obeys all equations; ineq’s ι ≤ ι′ in A sent to nat.trans. in Poset.

Let’s see one in action.

8 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Drawing functors P : A→ Poset

Let A be as above; it has objects N and morphisms generated by the icons

Let Poset be the symmetric monoidal po-category where:

objects are partially ordered sets (S ,≤),

1-morphisms f : S → T are monotone functions, a.k.a. functors,

2-morphisms α : f → g are natural transformations.

Cartesian monoidal structure: unit is 1, product is ×.

Main interest: lax monoidal po-functors P : A→ Poset. What’s one do?

It assigns a poset P(n) to each object n ∈ N = Ob(A),

It assigns a monotone map P(ι) : P(m)→ P(n) for each icon ι ∈ A,

It assigns maps 1→ P(0) and P(m1)× P(m2)→ P(m1 + m2),

It obeys all equations; ineq’s ι ≤ ι′ in A sent to nat.trans. in Poset.

Let’s see one in action.

8 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Drawing functors P : A→ Poset

Let A be as above; it has objects N and morphisms generated by the icons

Let Poset be the symmetric monoidal po-category where:

objects are partially ordered sets (S ,≤),

1-morphisms f : S → T are monotone functions, a.k.a. functors,

2-morphisms α : f → g are natural transformations.

Cartesian monoidal structure: unit is 1, product is ×.

Main interest: lax monoidal po-functors P : A→ Poset. What’s one do?

It assigns a poset P(n) to each object n ∈ N = Ob(A),

It assigns a monotone map P(ι) : P(m)→ P(n) for each icon ι ∈ A,

It assigns maps 1→ P(0) and P(m1)× P(m2)→ P(m1 + m2),

It obeys all equations; ineq’s ι ≤ ι′ in A sent to nat.trans. in Poset.

Let’s see one in action.

8 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Drawing functors P : A→ Poset

Let A be as above; it has objects N and morphisms generated by the icons

Let Poset be the symmetric monoidal po-category where:

objects are partially ordered sets (S ,≤),

1-morphisms f : S → T are monotone functions, a.k.a. functors,

2-morphisms α : f → g are natural transformations.

Cartesian monoidal structure: unit is 1, product is ×.

Main interest: lax monoidal po-functors P : A→ Poset. What’s one do?

It assigns a poset P(n) to each object n ∈ N = Ob(A),

It assigns a monotone map P(ι) : P(m)→ P(n) for each icon ι ∈ A,

It assigns maps 1→ P(0) and P(m1)× P(m2)→ P(m1 + m2),

It obeys all equations; ineq’s ι ≤ ι′ in A sent to nat.trans. in Poset.

Let’s see one in action.
8 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Finitely-generated abelian groups

Recall the abelian category fgAb of finitely-generated abelian groups.

Its most important object is Z.

Every other object is isomorphic to a quotient of a finite sum of Z’s.

Let’s use fgAb to build a lax monoidal po-functor P : A→ Poset.

For each n ∈ Ob(A), let P(n) := Sub(Zn). On morphisms?

η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

Define P(η!) : Sub(Z0)→ Sub(Z1) to be 1 7→ ⊥, “zero” subspace.

Define P(µ!) : Sub(Z2)→ Sub(Z) by R 7→ {x + y | (x , y) ∈ R}.
Of course P(η∗) and P(ε!) are the unique function Sub(Z1)→ 1.

Define P(µ∗) : Sub(Z)→ Sub(Z2) by R 7→ {(x , y) | x + y ∈ R}.
Define P(δ!) : Sub(Z)→ Sub(Z2) by R 7→ {(x , x) | x ∈ R}.
Define P(ε∗) : 1→ Sub(Z) by 1 7→ >.

Define P(δ∗) : Sub(Z2)→ Sub(Z) by R 7→ {x | (x , x) ∈ R}.

9 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Finitely-generated abelian groups

Recall the abelian category fgAb of finitely-generated abelian groups.

Its most important object is Z.

Every other object is isomorphic to a quotient of a finite sum of Z’s.

Let’s use fgAb to build a lax monoidal po-functor P : A→ Poset.

For each n ∈ Ob(A), let P(n) := Sub(Zn). On morphisms?

η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

Define P(η!) : Sub(Z0)→ Sub(Z1) to be 1 7→ ⊥, “zero” subspace.

Define P(µ!) : Sub(Z2)→ Sub(Z) by R 7→ {x + y | (x , y) ∈ R}.
Of course P(η∗) and P(ε!) are the unique function Sub(Z1)→ 1.

Define P(µ∗) : Sub(Z)→ Sub(Z2) by R 7→ {(x , y) | x + y ∈ R}.
Define P(δ!) : Sub(Z)→ Sub(Z2) by R 7→ {(x , x) | x ∈ R}.
Define P(ε∗) : 1→ Sub(Z) by 1 7→ >.

Define P(δ∗) : Sub(Z2)→ Sub(Z) by R 7→ {x | (x , x) ∈ R}.

9 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Finitely-generated abelian groups

Recall the abelian category fgAb of finitely-generated abelian groups.

Its most important object is Z.

Every other object is isomorphic to a quotient of a finite sum of Z’s.

Let’s use fgAb to build a lax monoidal po-functor P : A→ Poset.

For each n ∈ Ob(A), let P(n) := Sub(Zn). On morphisms?

η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

Define P(η!) : Sub(Z0)→ Sub(Z1) to be 1 7→ ⊥, “zero” subspace.

Define P(µ!) : Sub(Z2)→ Sub(Z) by R 7→ {x + y | (x , y) ∈ R}.
Of course P(η∗) and P(ε!) are the unique function Sub(Z1)→ 1.

Define P(µ∗) : Sub(Z)→ Sub(Z2) by R 7→ {(x , y) | x + y ∈ R}.
Define P(δ!) : Sub(Z)→ Sub(Z2) by R 7→ {(x , x) | x ∈ R}.
Define P(ε∗) : 1→ Sub(Z) by 1 7→ >.

Define P(δ∗) : Sub(Z2)→ Sub(Z) by R 7→ {x | (x , x) ∈ R}.

9 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Finitely-generated abelian groups

Recall the abelian category fgAb of finitely-generated abelian groups.

Its most important object is Z.

Every other object is isomorphic to a quotient of a finite sum of Z’s.

Let’s use fgAb to build a lax monoidal po-functor P : A→ Poset.

For each n ∈ Ob(A), let P(n) := Sub(Zn). On morphisms?

η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

Define P(η!) : Sub(Z0)→ Sub(Z1) to be 1 7→ ⊥, “zero” subspace.

Define P(µ!) : Sub(Z2)→ Sub(Z) by R 7→ {x + y | (x , y) ∈ R}.

Of course P(η∗) and P(ε!) are the unique function Sub(Z1)→ 1.

Define P(µ∗) : Sub(Z)→ Sub(Z2) by R 7→ {(x , y) | x + y ∈ R}.
Define P(δ!) : Sub(Z)→ Sub(Z2) by R 7→ {(x , x) | x ∈ R}.
Define P(ε∗) : 1→ Sub(Z) by 1 7→ >.

Define P(δ∗) : Sub(Z2)→ Sub(Z) by R 7→ {x | (x , x) ∈ R}.

9 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Finitely-generated abelian groups

Recall the abelian category fgAb of finitely-generated abelian groups.

Its most important object is Z.

Every other object is isomorphic to a quotient of a finite sum of Z’s.

Let’s use fgAb to build a lax monoidal po-functor P : A→ Poset.

For each n ∈ Ob(A), let P(n) := Sub(Zn). On morphisms?

η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

Define P(η!) : Sub(Z0)→ Sub(Z1) to be 1 7→ ⊥, “zero” subspace.

Define P(µ!) : Sub(Z2)→ Sub(Z) by R 7→ {x + y | (x , y) ∈ R}.
Of course P(η∗) and P(ε!) are the unique function Sub(Z1)→ 1.

Define P(µ∗) : Sub(Z)→ Sub(Z2) by R 7→ {(x , y) | x + y ∈ R}.
Define P(δ!) : Sub(Z)→ Sub(Z2) by R 7→ {(x , x) | x ∈ R}.
Define P(ε∗) : 1→ Sub(Z) by 1 7→ >.

Define P(δ∗) : Sub(Z2)→ Sub(Z) by R 7→ {x | (x , x) ∈ R}.

9 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Finitely-generated abelian groups

Recall the abelian category fgAb of finitely-generated abelian groups.

Its most important object is Z.

Every other object is isomorphic to a quotient of a finite sum of Z’s.

Let’s use fgAb to build a lax monoidal po-functor P : A→ Poset.

For each n ∈ Ob(A), let P(n) := Sub(Zn). On morphisms?

η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

Define P(η!) : Sub(Z0)→ Sub(Z1) to be 1 7→ ⊥, “zero” subspace.

Define P(µ!) : Sub(Z2)→ Sub(Z) by R 7→ {x + y | (x , y) ∈ R}.
Of course P(η∗) and P(ε!) are the unique function Sub(Z1)→ 1.

Define P(µ∗) : Sub(Z)→ Sub(Z2) by R 7→ {(x , y) | x + y ∈ R}.
Define P(δ!) : Sub(Z)→ Sub(Z2) by R 7→ {(x , x) | x ∈ R}.
Define P(ε∗) : 1→ Sub(Z) by 1 7→ >.

Define P(δ∗) : Sub(Z2)→ Sub(Z) by R 7→ {x | (x , x) ∈ R}.
9 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Sub(Z−) : A→ Poset is a lax monoidal po-functor

The assignment P(n) := Sub(Zn) as above is a lax monoidal po-functor.

Sub(Z−) is lax monoidal:

Product gives a map × : Sub(Zm)× Sub(Zn)→ Sub(Zm+n).

There is a unique map 1→ Sub(Z0).

Sub(Z−) is 2-functorial:

All equations in A are preserved. = translates to

R R= , i.e. {x + y | x ∈ R and y = 0} = R.

Inequalities are preserved. ≤ translates to

{(x , y , x ′, y ′) | (x , y) ∈ R ∧ (x = y = x ′ = y ′)} ⊆ R

R R≤

10 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Sub(Z−) : A→ Poset is a lax monoidal po-functor

The assignment P(n) := Sub(Zn) as above is a lax monoidal po-functor.

Sub(Z−) is lax monoidal:

Product gives a map × : Sub(Zm)× Sub(Zn)→ Sub(Zm+n).

There is a unique map 1→ Sub(Z0).

Sub(Z−) is 2-functorial:

All equations in A are preserved. = translates to

R R= , i.e. {x + y | x ∈ R and y = 0} = R.

Inequalities are preserved. ≤ translates to

{(x , y , x ′, y ′) | (x , y) ∈ R ∧ (x = y = x ′ = y ′)} ⊆ R

R R≤

10 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Sub(Z−) is bi-ajax and preserves involutions

Sub(Z−) : A→ Poset is in fact bi-ajax (bi-adjoint lax monoidal).

Not only is the assignment n 7→ Sub(Zn) lax monoidal,...

...each of its laxators has both a left adjoint and a right adjoint.

Consider the functor × : Sub(Zm)× Sub(Zn)→ Sub(Zm+n)

It has a right adjoint: intersect R ⊆ Zm+n with Zm and Zn.

It has a left adjoint: project R ⊆ Zm+n onto Zm and Zn.

Further, Sub(Z−) preserves involutions.

A has a “negation involution” =
.

Sub(Z−) applied to the negation involution sends R 7→ {x | −x ∈ R}.
Subspaces of Zn are closed under negation, so this is identity.

Sub(Z−) applied to negation involution in A is identity in Poset.

R R=

11 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Sub(Z−) is bi-ajax and preserves involutions

Sub(Z−) : A→ Poset is in fact bi-ajax (bi-adjoint lax monoidal).

Not only is the assignment n 7→ Sub(Zn) lax monoidal,...

...each of its laxators has both a left adjoint and a right adjoint.

Consider the functor × : Sub(Zm)× Sub(Zn)→ Sub(Zm+n)

It has a right adjoint: intersect R ⊆ Zm+n with Zm and Zn.

It has a left adjoint: project R ⊆ Zm+n onto Zm and Zn.

Further, Sub(Z−) preserves involutions.

A has a “negation involution” =
.

Sub(Z−) applied to the negation involution sends R 7→ {x | −x ∈ R}.
Subspaces of Zn are closed under negation, so this is identity.

Sub(Z−) applied to negation involution in A is identity in Poset.

R R=

11 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Sub(Z−) is bi-ajax and preserves involutions

Sub(Z−) : A→ Poset is in fact bi-ajax (bi-adjoint lax monoidal).

Not only is the assignment n 7→ Sub(Zn) lax monoidal,...

...each of its laxators has both a left adjoint and a right adjoint.

Consider the functor × : Sub(Zm)× Sub(Zn)→ Sub(Zm+n)

It has a right adjoint: intersect R ⊆ Zm+n with Zm and Zn.

It has a left adjoint: project R ⊆ Zm+n onto Zm and Zn.

Further, Sub(Z−) preserves involutions.

A has a “negation involution” =
.

Sub(Z−) applied to the negation involution sends R 7→ {x | −x ∈ R}.
Subspaces of Zn are closed under negation, so this is identity.

Sub(Z−) applied to negation involution in A is identity in Poset.

R R=

11 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Sub(Z−) is bi-ajax and preserves involutions

Sub(Z−) : A→ Poset is in fact bi-ajax (bi-adjoint lax monoidal).

Not only is the assignment n 7→ Sub(Zn) lax monoidal,...

...each of its laxators has both a left adjoint and a right adjoint.

Consider the functor × : Sub(Zm)× Sub(Zn)→ Sub(Zm+n)

It has a right adjoint: intersect R ⊆ Zm+n with Zm and Zn.

It has a left adjoint: project R ⊆ Zm+n onto Zm and Zn.

Further, Sub(Z−) preserves involutions.

A has a “negation involution” =
.

Sub(Z−) applied to the negation involution sends R 7→ {x | −x ∈ R}.
Subspaces of Zn are closed under negation, so this is identity.

Sub(Z−) applied to negation involution in A is identity in Poset.

R R=

11 / 17

Graphical language for abelian categories An abelian calculus for fgAb

Sub(Z−) is bi-ajax and preserves involutions

Sub(Z−) : A→ Poset is in fact bi-ajax (bi-adjoint lax monoidal).

Not only is the assignment n 7→ Sub(Zn) lax monoidal,...

...each of its laxators has both a left adjoint and a right adjoint.

Consider the functor × : Sub(Zm)× Sub(Zn)→ Sub(Zm+n)

It has a right adjoint: intersect R ⊆ Zm+n with Zm and Zn.

It has a left adjoint: project R ⊆ Zm+n onto Zm and Zn.

Further, Sub(Z−) preserves involutions.

A has a “negation involution” =
.

Sub(Z−) applied to the negation involution sends R 7→ {x | −x ∈ R}.
Subspaces of Zn are closed under negation, so this is identity.

Sub(Z−) applied to negation involution in A is identity in Poset.

R R=

11 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

The syntactic category of P : A→ Poset
Such P’s have syntactic categories, and these are abelian.

Let P : A→ Poset be a bi-ajax functor that preserves involutions.

Define a category Syn(P) as follows:
Ob(SynP) := {(m,Q, S) | m ∈ N,Q ≤ S ∈ P(m)}.
Think “formal subquotients.” We’ll see this acts like S/Q.

idm,Q,S :=
Q S

m m

Anonymize out Q’s, select only S ’s.

(SynP)((m,Q,S), (m′,Q ′,S ′)) :=

{L ∈ P(m+m′) | Q�Q ′ ≤ L ≤ S�S ′ and L is an internal left adjoint}

Q S L R≤ R L Q′ S′≤

Think “group homomorphism S/Q → S ′/Q ′.”

One can prove that the result Syn(P) is a category and that it’s abelian.

12 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

The syntactic category of P : A→ Poset
Such P’s have syntactic categories, and these are abelian.

Let P : A→ Poset be a bi-ajax functor that preserves involutions.

Define a category Syn(P) as follows:

Ob(SynP) := {(m,Q, S) | m ∈ N,Q ≤ S ∈ P(m)}.
Think “formal subquotients.” We’ll see this acts like S/Q.

idm,Q,S :=
Q S

m m

Anonymize out Q’s, select only S ’s.

(SynP)((m,Q,S), (m′,Q ′,S ′)) :=

{L ∈ P(m+m′) | Q�Q ′ ≤ L ≤ S�S ′ and L is an internal left adjoint}

Q S L R≤ R L Q′ S′≤

Think “group homomorphism S/Q → S ′/Q ′.”

One can prove that the result Syn(P) is a category and that it’s abelian.

12 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

The syntactic category of P : A→ Poset
Such P’s have syntactic categories, and these are abelian.

Let P : A→ Poset be a bi-ajax functor that preserves involutions.

Define a category Syn(P) as follows:
Ob(SynP) := {(m,Q, S) | m ∈ N,Q ≤ S ∈ P(m)}.
Think “formal subquotients.” We’ll see this acts like S/Q.

idm,Q,S :=
Q S

m m

Anonymize out Q’s, select only S ’s.

(SynP)((m,Q,S), (m′,Q ′,S ′)) :=

{L ∈ P(m+m′) | Q�Q ′ ≤ L ≤ S�S ′ and L is an internal left adjoint}

Q S L R≤ R L Q′ S′≤

Think “group homomorphism S/Q → S ′/Q ′.”

One can prove that the result Syn(P) is a category and that it’s abelian.

12 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

The syntactic category of P : A→ Poset
Such P’s have syntactic categories, and these are abelian.

Let P : A→ Poset be a bi-ajax functor that preserves involutions.

Define a category Syn(P) as follows:
Ob(SynP) := {(m,Q, S) | m ∈ N,Q ≤ S ∈ P(m)}.
Think “formal subquotients.” We’ll see this acts like S/Q.

idm,Q,S :=
Q S

m m

Anonymize out Q’s, select only S ’s.

(SynP)((m,Q,S), (m′,Q ′,S ′)) :=

{L ∈ P(m+m′) | Q�Q ′ ≤ L ≤ S�S ′ and L is an internal left adjoint}

Q S L R≤ R L Q′ S′≤

Think “group homomorphism S/Q → S ′/Q ′.”

One can prove that the result Syn(P) is a category and that it’s abelian.

12 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

The syntactic category of P : A→ Poset
Such P’s have syntactic categories, and these are abelian.

Let P : A→ Poset be a bi-ajax functor that preserves involutions.

Define a category Syn(P) as follows:
Ob(SynP) := {(m,Q, S) | m ∈ N,Q ≤ S ∈ P(m)}.
Think “formal subquotients.” We’ll see this acts like S/Q.

idm,Q,S :=
Q S

m m

Anonymize out Q’s, select only S ’s.

(SynP)((m,Q,S), (m′,Q ′,S ′)) :=

{L ∈ P(m+m′) | Q�Q ′ ≤ L ≤ S�S ′ and L is an internal left adjoint}

Q S L R≤ R L Q′ S′≤

Think “group homomorphism S/Q → S ′/Q ′.”

One can prove that the result Syn(P) is a category and that it’s abelian.

12 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

The syntactic category of P : A→ Poset
Such P’s have syntactic categories, and these are abelian.

Let P : A→ Poset be a bi-ajax functor that preserves involutions.

Define a category Syn(P) as follows:
Ob(SynP) := {(m,Q, S) | m ∈ N,Q ≤ S ∈ P(m)}.
Think “formal subquotients.” We’ll see this acts like S/Q.

idm,Q,S :=
Q S

m m

Anonymize out Q’s, select only S ’s.

(SynP)((m,Q,S), (m′,Q ′,S ′)) :=

{L ∈ P(m+m′) | Q�Q ′ ≤ L ≤ S�S ′ and L is an internal left adjoint}

Q S L R≤ R L Q′ S′≤

Think “group homomorphism S/Q → S ′/Q ′.”

One can prove that the result Syn(P) is a category and that it’s abelian.

12 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

The syntactic category of P : A→ Poset
Such P’s have syntactic categories, and these are abelian.

Let P : A→ Poset be a bi-ajax functor that preserves involutions.

Define a category Syn(P) as follows:
Ob(SynP) := {(m,Q, S) | m ∈ N,Q ≤ S ∈ P(m)}.
Think “formal subquotients.” We’ll see this acts like S/Q.

idm,Q,S :=
Q S

m m

Anonymize out Q’s, select only S ’s.

(SynP)((m,Q,S), (m′,Q ′,S ′)) :=

{L ∈ P(m+m′) | Q�Q ′ ≤ L ≤ S�S ′ and L is an internal left adjoint}

Q S L R≤ R L Q′ S′≤

Think “group homomorphism S/Q → S ′/Q ′.”

One can prove that the result Syn(P) is a category and that it’s abelian.

12 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

The syntactic category of P : A→ Poset
Such P’s have syntactic categories, and these are abelian.

Let P : A→ Poset be a bi-ajax functor that preserves involutions.

Define a category Syn(P) as follows:
Ob(SynP) := {(m,Q, S) | m ∈ N,Q ≤ S ∈ P(m)}.
Think “formal subquotients.” We’ll see this acts like S/Q.

idm,Q,S :=
Q S

m m

Anonymize out Q’s, select only S ’s.

(SynP)((m,Q,S), (m′,Q ′,S ′)) :=

{L ∈ P(m+m′) | Q�Q ′ ≤ L ≤ S�S ′ and L is an internal left adjoint}

Q S L R≤ R L Q′ S′≤

Think “group homomorphism S/Q → S ′/Q ′.”

One can prove that the result Syn(P) is a category and that it’s abelian.
12 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

Aside: a sequence being a complex is its homology

Suppose given a sequence A
f−→ B

g−→ C of abelian group homomorphisms.

If im(f) ⊆ ker(g), as subobjects of B, we say it’s a complex.

But in the syntactic category such relationships Q ⊆ S define objects.

Namely, im(f) ⊆ ker(g) just is the quotient object ker(g)/ im(f).

This is the homology of the complex there.

The homology at B is the assertion that the sequence is a complex at B.

13 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

Aside: a sequence being a complex is its homology

Suppose given a sequence A
f−→ B

g−→ C of abelian group homomorphisms.

If im(f) ⊆ ker(g), as subobjects of B, we say it’s a complex.

But in the syntactic category such relationships Q ⊆ S define objects.

Namely, im(f) ⊆ ker(g) just is the quotient object ker(g)/ im(f).

This is the homology of the complex there.

The homology at B is the assertion that the sequence is a complex at B.

13 / 17

Graphical language for abelian categories The syntactic category of an abelian calculus

Aside: a sequence being a complex is its homology

Suppose given a sequence A
f−→ B

g−→ C of abelian group homomorphisms.

If im(f) ⊆ ker(g), as subobjects of B, we say it’s a complex.

But in the syntactic category such relationships Q ⊆ S define objects.

Namely, im(f) ⊆ ker(g) just is the quotient object ker(g)/ im(f).

This is the homology of the complex there.

The homology at B is the assertion that the sequence is a complex at B.

13 / 17

The 2-reflection

Outline

1 Introduction

2 Graphical language for abelian categories

3 The 2-reflection
Supply of algebraic structure
Defining abelian calculi
Predicates

4 Conclusion

13 / 17

The 2-reflection Supply of algebraic structure

The notion of supply

“Every object is compatibly equipped with algebraic structure from P.”

Definition

Let C be a symmetric monoidal category (SMC) and P a prop. A supply of
P in C consists of a strict monoidal functor sc : P→ C with s(1) = c for
every object c ∈ C, such that the following diagrams commute:

c⊗m ⊗ d⊗m c⊗n ⊗ d⊗n

(c ⊗ d)⊗m (c ⊗ d)⊗n

sc (µ)⊗ sd (µ)

∼= ∼=

sc⊗d (µ)

I I

I⊗m I⊗n
∼= ∼=

sI (µ)

Same definition for SM po-categories and po-props.
Examples:

If C has finite products, it has a supply of comonoids.

There is always a canonical supply of P in P.

If A is abelian, its relations po-cat RelA supplies abelian relations A.

14 / 17

The 2-reflection Supply of algebraic structure

The notion of supply

“Every object is compatibly equipped with algebraic structure from P.”

Definition

Let C be a symmetric monoidal category (SMC) and P a prop.

A supply of
P in C consists of a strict monoidal functor sc : P→ C with s(1) = c for
every object c ∈ C, such that the following diagrams commute:

c⊗m ⊗ d⊗m c⊗n ⊗ d⊗n

(c ⊗ d)⊗m (c ⊗ d)⊗n

sc (µ)⊗ sd (µ)

∼= ∼=

sc⊗d (µ)

I I

I⊗m I⊗n
∼= ∼=

sI (µ)

Same definition for SM po-categories and po-props.
Examples:

If C has finite products, it has a supply of comonoids.

There is always a canonical supply of P in P.

If A is abelian, its relations po-cat RelA supplies abelian relations A.

14 / 17

The 2-reflection Supply of algebraic structure

The notion of supply

“Every object is compatibly equipped with algebraic structure from P.”

Definition

Let C be a symmetric monoidal category (SMC) and P a prop. A supply of
P in C consists of a strict monoidal functor sc : P→ C with s(1) = c for
every object c ∈ C, such that the following diagrams commute:

c⊗m ⊗ d⊗m c⊗n ⊗ d⊗n

(c ⊗ d)⊗m (c ⊗ d)⊗n

sc (µ)⊗ sd (µ)

∼= ∼=

sc⊗d (µ)

I I

I⊗m I⊗n
∼= ∼=

sI (µ)

Same definition for SM po-categories and po-props.
Examples:

If C has finite products, it has a supply of comonoids.

There is always a canonical supply of P in P.

If A is abelian, its relations po-cat RelA supplies abelian relations A.

14 / 17

The 2-reflection Supply of algebraic structure

The notion of supply

“Every object is compatibly equipped with algebraic structure from P.”

Definition

Let C be a symmetric monoidal category (SMC) and P a prop. A supply of
P in C consists of a strict monoidal functor sc : P→ C with s(1) = c for
every object c ∈ C, such that the following diagrams commute:

c⊗m ⊗ d⊗m c⊗n ⊗ d⊗n

(c ⊗ d)⊗m (c ⊗ d)⊗n

sc (µ)⊗ sd (µ)

∼= ∼=

sc⊗d (µ)

I I

I⊗m I⊗n
∼= ∼=

sI (µ)

Same definition for SM po-categories and po-props.

Examples:

If C has finite products, it has a supply of comonoids.

There is always a canonical supply of P in P.

If A is abelian, its relations po-cat RelA supplies abelian relations A.

14 / 17

The 2-reflection Supply of algebraic structure

The notion of supply

“Every object is compatibly equipped with algebraic structure from P.”

Definition

Let C be a symmetric monoidal category (SMC) and P a prop. A supply of
P in C consists of a strict monoidal functor sc : P→ C with s(1) = c for
every object c ∈ C, such that the following diagrams commute:

c⊗m ⊗ d⊗m c⊗n ⊗ d⊗n

(c ⊗ d)⊗m (c ⊗ d)⊗n

sc (µ)⊗ sd (µ)

∼= ∼=

sc⊗d (µ)

I I

I⊗m I⊗n
∼= ∼=

sI (µ)

Same definition for SM po-categories and po-props.
Examples:

If C has finite products, it has a supply of comonoids.

There is always a canonical supply of P in P.

If A is abelian, its relations po-cat RelA supplies abelian relations A.

14 / 17

The 2-reflection Supply of algebraic structure

The notion of supply

“Every object is compatibly equipped with algebraic structure from P.”

Definition

Let C be a symmetric monoidal category (SMC) and P a prop. A supply of
P in C consists of a strict monoidal functor sc : P→ C with s(1) = c for
every object c ∈ C, such that the following diagrams commute:

c⊗m ⊗ d⊗m c⊗n ⊗ d⊗n

(c ⊗ d)⊗m (c ⊗ d)⊗n

sc (µ)⊗ sd (µ)

∼= ∼=

sc⊗d (µ)

I I

I⊗m I⊗n
∼= ∼=

sI (µ)

Same definition for SM po-categories and po-props.
Examples:

If C has finite products, it has a supply of comonoids.

There is always a canonical supply of P in P.

If A is abelian, its relations po-cat RelA supplies abelian relations A.

14 / 17

The 2-reflection Supply of algebraic structure

The notion of supply

“Every object is compatibly equipped with algebraic structure from P.”

Definition

Let C be a symmetric monoidal category (SMC) and P a prop. A supply of
P in C consists of a strict monoidal functor sc : P→ C with s(1) = c for
every object c ∈ C, such that the following diagrams commute:

c⊗m ⊗ d⊗m c⊗n ⊗ d⊗n

(c ⊗ d)⊗m (c ⊗ d)⊗n

sc (µ)⊗ sd (µ)

∼= ∼=

sc⊗d (µ)

I I

I⊗m I⊗n
∼= ∼=

sI (µ)

Same definition for SM po-categories and po-props.
Examples:

If C has finite products, it has a supply of comonoids.

There is always a canonical supply of P in P.

If A is abelian, its relations po-cat RelA supplies abelian relations A.
14 / 17

The 2-reflection Defining abelian calculi

Abelian calculi

Definition

An abelian calculus is a pair (C,P), where C supplies abelian relations and
P : C → Poset is bi-ajax and preserves involutions.

Theorem (Fong-S.)

Abelian categories are reflective in the 2-category of abelian calculi.

AbCalc AbCat
Syn

Prd

⇒

In particular for A ∈ AbCat, the unit A
∼=−→ SynPrd(A) is an equivalence.

15 / 17

The 2-reflection Defining abelian calculi

Abelian calculi

Definition

An abelian calculus is a pair (C,P), where C supplies abelian relations and
P : C → Poset is bi-ajax and preserves involutions.

Theorem (Fong-S.)

Abelian categories are reflective in the 2-category of abelian calculi.

AbCalc AbCat
Syn

Prd

⇒

In particular for A ∈ AbCat, the unit A
∼=−→ SynPrd(A) is an equivalence.

15 / 17

The 2-reflection Predicates

The predicates functor

The inclusion “predicates” functor Prd: AbCat→ AbCalc is given by

Prd(A) := (RelA,RelA(0,−)).

Since A is abelian, RelA supplies abelian relations.

RelA(0,−)) : RelA → Poset sends A 7→ RelA(0,A) = Sub(A).

Easy to see that RelA(0,−) is a po-functor; it’s represented by 0.

It is also bi-ajax and preserves involutions.

Prd: AbCat→ AbCalc is fully faithful and locally fully faithful.

16 / 17

The 2-reflection Predicates

The predicates functor

The inclusion “predicates” functor Prd: AbCat→ AbCalc is given by

Prd(A) := (RelA,RelA(0,−)).

Since A is abelian, RelA supplies abelian relations.

RelA(0,−)) : RelA → Poset sends A 7→ RelA(0,A) = Sub(A).

Easy to see that RelA(0,−) is a po-functor; it’s represented by 0.

It is also bi-ajax and preserves involutions.

Prd: AbCat→ AbCalc is fully faithful and locally fully faithful.

16 / 17

The 2-reflection Predicates

The predicates functor

The inclusion “predicates” functor Prd: AbCat→ AbCalc is given by

Prd(A) := (RelA,RelA(0,−)).

Since A is abelian, RelA supplies abelian relations.

RelA(0,−)) : RelA → Poset sends A 7→ RelA(0,A) = Sub(A).

Easy to see that RelA(0,−) is a po-functor; it’s represented by 0.

It is also bi-ajax and preserves involutions.

Prd: AbCat→ AbCalc is fully faithful and locally fully faithful.

16 / 17

Conclusion

Outline

1 Introduction

2 Graphical language for abelian categories

3 The 2-reflection

4 Conclusion

16 / 17

Conclusion

Summary

Abelian calculi give a “sketch” approach to abelian categories.

The 2-cat of abelian categories embeds into that of abelian calculi.

This embedding is full, and it has a reflector Syn: AbCalc→ AbCat.

An abelian calculus, e.g. P : A→ Poset, is graphical.

Have access to icons: η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

These icons and their relations are used in constructing Syn(P)...

...namely to define identity, composition, kernels, and cokernels.

Different knobs to turn.

Knobs in AbCat: four axioms (coprods, prods, kernels, cokernels).

Knobs in AbCalc: “bi-ajax functor to Poset, preserving involutions”.

Thanks! Questions and comments welcome!

17 / 17

Conclusion

Summary

Abelian calculi give a “sketch” approach to abelian categories.

The 2-cat of abelian categories embeds into that of abelian calculi.

This embedding is full, and it has a reflector Syn: AbCalc→ AbCat.

An abelian calculus, e.g. P : A→ Poset, is graphical.

Have access to icons: η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

These icons and their relations are used in constructing Syn(P)...

...namely to define identity, composition, kernels, and cokernels.

Different knobs to turn.

Knobs in AbCat: four axioms (coprods, prods, kernels, cokernels).

Knobs in AbCalc: “bi-ajax functor to Poset, preserving involutions”.

Thanks! Questions and comments welcome!

17 / 17

Conclusion

Summary

Abelian calculi give a “sketch” approach to abelian categories.

The 2-cat of abelian categories embeds into that of abelian calculi.

This embedding is full, and it has a reflector Syn: AbCalc→ AbCat.

An abelian calculus, e.g. P : A→ Poset, is graphical.

Have access to icons: η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

These icons and their relations are used in constructing Syn(P)...

...namely to define identity, composition, kernels, and cokernels.

Different knobs to turn.

Knobs in AbCat: four axioms (coprods, prods, kernels, cokernels).

Knobs in AbCalc: “bi-ajax functor to Poset, preserving involutions”.

Thanks! Questions and comments welcome!

17 / 17

Conclusion

Summary

Abelian calculi give a “sketch” approach to abelian categories.

The 2-cat of abelian categories embeds into that of abelian calculi.

This embedding is full, and it has a reflector Syn: AbCalc→ AbCat.

An abelian calculus, e.g. P : A→ Poset, is graphical.

Have access to icons: η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

These icons and their relations are used in constructing Syn(P)...

...namely to define identity, composition, kernels, and cokernels.

Different knobs to turn.

Knobs in AbCat: four axioms (coprods, prods, kernels, cokernels).

Knobs in AbCalc: “bi-ajax functor to Poset, preserving involutions”.

Thanks! Questions and comments welcome!

17 / 17

Conclusion

Summary

Abelian calculi give a “sketch” approach to abelian categories.

The 2-cat of abelian categories embeds into that of abelian calculi.

This embedding is full, and it has a reflector Syn: AbCalc→ AbCat.

An abelian calculus, e.g. P : A→ Poset, is graphical.

Have access to icons: η! µ! η∗ µ∗ ε! δ! ε∗ δ∗

These icons and their relations are used in constructing Syn(P)...

...namely to define identity, composition, kernels, and cokernels.

Different knobs to turn.

Knobs in AbCat: four axioms (coprods, prods, kernels, cokernels).

Knobs in AbCalc: “bi-ajax functor to Poset, preserving involutions”.

Thanks! Questions and comments welcome!

17 / 17

	Introduction
	Abelian categories
	Plan for the talk

	Graphical language for abelian categories
	Graphical languages in category theory
	Introducing abelian relations
	Abelian relations in action
	The backbone of the graphical language
	An abelian calculus for fgAb
	The syntactic category of an abelian calculus

	The 2-reflection
	Supply of algebraic structure
	Defining abelian calculi
	Predicates

	Conclusion

