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Conceptual levels in study of algebra

1. Algebra
A set (an object) equipped with an algebraic structure.
E.g., the group S5, the ring Z.

2. Algebraic theory
Specification of a type of algebras.
E.g., the clone of groups, the operad of monoids.

3. Notion of algebraic theory
Framework for a type of algebraic theories.
E.g., {clones}, {operads}.

This talk: unified account of notions of algebraic theory.
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Examples of notions of algebraic theory

1. Clones/Lawvere theories [Lawvere, 1963]

Categorical equivalent of universal algebra.
Applications to computational effects [Plotkin–Power 2002, ...].

2. Symmetric operads, non-symmetric operads [May, 1972]

Originates in homotopy theory for algebras-up-to-homotopy.

3. Clubs/generalised operads [Burroni, 1971; Kelly, 1972]

Classical approach to categories with structure [Kelly 1972].
The ‘globular operad’ approach to higher categories [Batanin

1998, Leinster 2004].

4. PROPs, PROs [Mac Lane 1965]

‘Many-in, many-out’ version of (non-)symmetric operads.

5. Monads [Godement, 1958; Linton, 1965; Eilenberg–Moore, 1965]

Monads on Set = infinitary version of clones.
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Metatheory and theory

Definition

1. A metatheory is a monoidal category M = (M, I ,⊗).

2. A theory in M is a monoid T = (T , e,m) in M. That is,
I T : an object of M;
I e : I −→ T ;
I m : T ⊗ T −→ T ;

satisfying the associativity and unit laws.

‘Metatheory’ (technical term) formalises ‘notion of algebraic
theory’ (non-technical term).
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Example: clones

Definition

The category F

I object: the sets [n] = {1, ..., n} for all n ∈ N;

I morphism: all functions.
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Example: clones

Definition

The metatheory of clones is the monoidal category ([F,Set], I , •)
where • is the substitution monoidal product [Kelly–Power 1993;

Fiore–Plotkin–Turi 1999].

I I = F([1],−) ∈ [F,Set];

I for X ,Y ∈ [F,Set],

(Y • X )n =

∫ [m]∈F

Ym × (Xn)m .
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Example: clones

θ ∈ Xn θ
...n

An element of (Y • X )n =
∫ [m]∈F

Ym × (Xn)m is:

φ ∈ Ym, θi ∈ Xn φ
...

θ1

...

...

θm
...

...n

modulo action of F.
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Example: clones

Definition (classical; see e.g., [Taylor, 1993])

A clone C is given by

I (Cn)n∈N: a family of sets;

I ∀n ∈ N, ∀i ∈ {1, . . . , n}, an element p
(n)
i ∈ Cn;

I ∀n,m ∈ N, a function

◦(n)
m : Cm × (Cn)m −→ Cn

satisfying the associativity and the unit axioms.

(In universal algebra, people sometimes omit C0.)
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Example: clones

Example

C: category with finite products
C ∈ C
The clone End(C ) of endo-multimorphisms on C is defined by:

I End(C )n = C(Cn,C );

I p
(n)
i ∈ End(C )n is the i-th projection p

(n)
i : Cn −→ C ;

I ◦(n)
m : End(C )m × (End(C )n)m −→ End(C )n maps

(g , f1, . . . , fm) to g ◦ 〈f1, . . . , fm〉:

Cn Cm C .
〈f1, . . . , fm〉 g

(In fact, every clone is isomorphic to End(C ) for some C and
C ∈ C.)
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Example: clones

Proposition ([Kelly–Power, 1993; Fiore–Plotkin–Turi 1999])

There is an isomorphism of categories

Clo ∼= Mon([F,Set], I , •).
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Example: clones

Recall again:

Definition

1. A metatheory is a monoidal category M.

2. A theory in M is a monoid T in M.

and:

Definition

The metatheory of clones is the monoidal category
([F,Set], I , •).

Theories in ([F,Set], I , •) = clones.
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Example: symmetric operads

Definition

The category P

I object: the sets [n] = {1, ..., n} for all n ∈ N;

I morphism: all bijections.

Definition (cf. [Kelly 2005; Curien 2012; Hyland 2014])

The metatheory of symmetric operads is the monoidal category
([P,Set], I , •).

Variables can be permuted, but cannot be copied nor discarded.

3 x1 · x2 = x2 · x1 ; (x1 · x2) · x3 = x1 · (x2 · x3).

7 x1 · x1 = x1 ; x1 · x2 = x1.
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Example: non-symmetric operads

Definition

The (discrete) category N

I object: the sets [n] = {1, ..., n} for all n ∈ N;

I morphism: all identities.

Definition (cf. [Kelly 2005; Curien 2012; Hyland 2014])

The metatheory of non-symmetric operads is the monoidal
category ([N,Set], I , •).

Variables cannot be permuted (nor discarded/copied).

3 (x1 · x2) · x3 = x1 · (x2 · x3) ; φm(φm′(x1)) = φmm′(x1).

7 x1 · x2 = x2 · x1.
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Example: PROs

Definition ([Mac Lane 1965])

A PRO is given by:

I a monoidal category T;

I an identity-on-objects, strict monoidal functor J from the
(strict) monoidal category N = (N, [0],+) to T.

For n,m ∈ Nat, an element θ ∈ T([n], [m]) is depicted as

θ
...n

... m
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Example: PROs

Definition ([Bénabou 1973; Lawvere 1973])

A,B: (small)1 categories
A profunctor (= distributor = bimodule) from A to B is a
functor

H : Bop ×A −→ Set.

Categories, profunctors and natural transformations form a
bicategory.
⇒ For any category A, the category [Aop ×A,Set] of
endo-profunctors on A is monoidal.

1In this talk, I am going to ignore the size issues.
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Example: PROs

Proposition (Folklore)

A: category
To give a monoid in [Aop ×A,Set] is equivalent to giving a
category B together with an identity-on-objects functor
J : A −→ B.

Recall:

Definition ([Mac Lane 1965])

A PRO is given by:

I a monoidal category T;

I an identity-on-objects, strict monoidal functor J from the
(strict) monoidal category N = (N, [0],+) to T.

Idea: use a monoidal version of profunctors.
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Example: PROs

Definition ([Im–Kelly 1986])

M = (M, IM,⊗M),N = (N , IN ,⊗N ): monoidal category
A monoidal profunctor from M to N is a lax monoidal functor

(H, h·, h) : N op ×M −→ (Set, 1,×).

That is:

I a functor H : N op ×M −→ Set;

I a function h· : 1 −→ H(IN , IM);

I a natural transformation
hN,N′,M,M′ : H(N ′,M ′)×H(N,M) −→ H(N ′⊗N N,M ′⊗MM)

satisfying the coherence axioms.
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Example: PROs

Monoidal categories, monoidal profunctors and monoidal natural
transformations form a bicategory.
⇒ For any monoidal category M, the category
Mon Cat(Mop ×M,Set) is monoidal.

Proposition

M: monoidal category
To give a monoid in Mon Cat(Mop ×M,Set) is equivalent to
giving a monoidal category N together with an
identity-on-objects strict monoidal functor J : M−→ N .

Definition

The metatheory of PROs is the monoidal category
Mon Cat(Nop ×N,Set).
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Other examples

Definition

The metatheory of PROPs is the monoidal category
SymMon Cat(Pop × P,Set) of symmetric monoidal
endo-profunctors on P.

Definition

C: category with finite limits; S : cartesian monad on C
The metatheory of clubs over S is the monoidal category
(C/S1, η1, •).

Definition

C: category.
The metatheory of monads on C is the monoidal category
End(C) = ([C, C], idC , ◦).
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One theory, various models

Important feature of notions of algebraic theory (esp. of clones,
operads, PROs, PROPs): a single theory can have models in
many categories.

Example

A clone can have its models in any category with finite
products. Models of the clone of groups

I in Set: ordinary groups;

I in FinSet: finite groups;

I in Top: topological groups;

I in Mfd: Lie groups;

I in Grp: abelian groups.

How does it work?
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One theory, various models

Given a notion of algebraic theory, ...

1. first define a notion of model, i.e., what it means to be a
model of a theory;

2. then consider a model of a theory following the notion of
model.

Example

For clones, ...

1. C: category with finite product
a model in C of a clone T is an object C ∈ C together with a
clone morphism T −→ End(C );

2. find a particular model, i.e., an object C ∈ C together with a
clone morphism T −→ End(C ).
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One theory, various models

For metatheories (formalising notions of algebraic theory),
we introduce metamodels (formalising notions of model) later.

First we look at two simple subclasses of metamodels:

I enrichment;

I (left) oplax action.
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Definitions

Definition

M = (M, I ,⊗): metatheory; T = (T , e,m): theory in M.

1. An enrichment in M is a category C equipped with
I 〈−,−〉 : Cop × C −→M: a functor;
I jC : I −→ 〈C ,C 〉: a nat. tr.;
I MA,B,C : 〈B,C 〉 ⊗ 〈A,B〉 −→ 〈A,C 〉: a nat. tr.

satisfying the suitable coherence axioms.
(∀C ∈ C, End(C ) = (〈C ,C 〉, jC ,MC ,C ,C ): monoid in M.)

2. A model of T with respect to (C, 〈−,−〉) is an object C of
C together with a monoid morphism T −→ End(C ). That is,

I χ : T −→ 〈C ,C 〉: a morphism in M
commuting with multiplication and unit.
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Definitions

M: metatheory
T: theory in M
(C, 〈−,−〉): enrichment in M

We obtain the category

Mod(T, (C, 〈−,−〉))

of models and homomorphisms together with a forgetful functor

Mod(T, (C, 〈−,−〉))

C

U

Fujii (Kyoto) 27 / 54
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Example: clones [F,Set]

Definition

C: category with finite products

The standard C-metamodel of clones is the enrichment
〈−,−〉 : Cop × C −→ [F,Set] given by

I for A,B ∈ C and [m] ∈ F,

〈A,B〉m = C(Am,B) .

So a model of a theory T = (T , e,m) consists of

I an object C ∈ C;

I

a nat. tr. χ : T −→ 〈C ,C 〉 (w/ cond.)

∀m ∈ N, a function χm : Tm −→ C(Cm,C ) (w/ cond.)

∀m ∈ N,∀θ ∈ Tm, a morphism [[θ]]χ : Cm −→ C (w/ cond.).
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Example: PROs Mon Cat(Nop ×N,Set)

Definition

C = (C, I ,⊗): monoidal category

The standard C-metamodel of PROs is the enrichment
〈−,−〉 : Cop × C −→Mon Cat(Nop ×N,Set) given by

I for A,B ∈ C and n,m ∈ N,

〈A,B〉([n], [m]) = C(A⊗m,B⊗n) .

There are analogous enrichments for non-symmetric operads,
symmetric operads and PROPs.
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Definitions

Definition

M = (M, I ,⊗): metatheory; T = (T , e,m): theory in M.

1. A (left) oplax action of M is a category C equipped with
I ∗ : M×C −→ C: a functor;
I εC : I ∗ C −→ C : a nat. tr.;
I δX ,Y ,C : (Y ⊗ X ) ∗ C −→ Y ∗ (X ∗ C ): a nat. tr.

satisfying the suitable coherence axioms.

2. A model of T with respect to (C, ∗) is an object C of C
together with a left T-action γ on C . That is,

I γ : T ∗ C −→ C : a morphism in C
satisfying the associativity and left unit axioms.
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Definitions

M: metatheory
T: theory in M
(C, ∗): oplax action of M

We obtain the category

Mod(T, (C, ∗))

of models and homomorphisms together with a forgetful functor

Mod(T, (C, ∗))

C

U
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Example: monads [C, C]

Definition

C: category

The standard C-metamodel of monads on C is the action
evC : [C, C]× C −→ C given by evaluation.

So a model of a theory T = (T ,m, e) consists of

I an object C ∈ C;

I a morphism γ : TC −→ C in C
satisfying the associativity and left unit axioms. That is, an
Eilenberg–Moore algebra of T.

Mod(T, (C, evC)) ∼= CT
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Unifying the two approaches

A unified approach?

Action Enrichment

Action-enrichment
adjunction

•

Monad

Generalised
operad

Clone

Symmetric
operad

Non-symmetric
operad

PROP

PRO
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Unifying the two approaches via metamodels

Metamodel

Action Enrichment

Action-enrichment
adjunction

•

Monad

Generalised
operad

Clone

Symmetric
operad

Non-symmetric
operad

PROP

PRO
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Metamodels and models

Definition

M = (M, I ,⊗): metatheory; T = (T , e,m): theory in M.

1. A metamodel of M is a category C together with:
I Φ: Mop × Cop × C −→ Set: a functor;

(X ,A,B) 7−→ ΦX (A,B)
I (φ·)C : 1 −→ ΦI (C ,C ): a nat. tr.;
I (φX ,Y )A,B,C : ΦY (B,C )× ΦX (A,B) −→ ΦY⊗X (A,C ): nat. tr.

satisfying the suitable coherence axioms.

2. A model of T with respect to (C,Φ) is (C , ξ) where
I C ∈ C;
I ξ ∈ ΦT (C ,C );

satisfying the suitable coherence axioms.
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Incorporating enrichments

Given an enrichment

〈−,−〉 : Cop × C −→M,

define a metamodel

Φ: Mop × Cop × C −→ Set

by
ΦX (A,B) = M(X , 〈A,B〉).

For any theory T = (T , e,m) in M, we have

a model (C , χ : T −→ 〈C ,C 〉) (via enrichment)

a model (C , ξ ∈ ΦT (C ,C )) (via metamodel).
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Incorporating oplax actions

Given an oplax action

∗ : M×C −→ C,

define a metamodel

Φ: Mop × Cop × C −→ Set

by
ΦX (A,B) = C(X ∗ A,B).

For any theory T = (T , e,m) in M, we have

a model (C , γ : T ∗ C −→ C ) (via oplax action)

a model (C , ξ ∈ ΦT (C ,C )) (via metamodel).
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Categories of models as hom-categories

M: metatheory

I Metamodels of M form a 2-category MMod(M).

I A theory T = (T , e,m) in M can be considered as a
metamodel Φ(T) of M in the terminal category 1:

Φ(T) : Mop × 1op × 1 −→ Set

(X , ∗, ∗) 7−→M(X ,T ).

I For any theory T in M and a metamodel (C,Φ) of M, the
category of models Mod(T, (C,Φ)) is isomorphic to the
hom-category

MMod(M)((1,Φ(T)), (C,Φ)).
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Morphisms of metatheories

Motivation: uniform method to relate different notions of algebraic
theory.

⇒ We want a notion of morphism of metatheories, which
suitably acts on metamodels.
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Morphisms of metatheories

Definition (cf. [Im–Kelly 1986])

M = (M, IM,⊗M),N = (N , IN ,⊗N ): metatheories
A morphism of metatheories from M to N , written as

H = (H, h·, h) : M 7−→ N ,

is a monoidal profunctor fromM to N , i.e., a lax monoidal functor

(H, h·, h) : N op ×M −→ (Set, 1,×).

Specifically:

I a functor H : N op ×M −→ Set;

I a function h· : 1 −→ H(IN , IM);

I a natural transformation
hN,N′,M,M′ : H(N ′,M ′)×H(N,M) −→ H(N ′⊗N N,M ′⊗MM)

satisfying the coherence axioms.
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Relation to lax/oplax monoidal functors

I A lax monoidal functor F : M−→ N induces a morphism
F∗ : M 7−→ N defined as

F∗ : N op ×M −→ Set

(N,M) 7−→ N (N,FM).

I An oplax monoidal functor F : M−→ N induces a morphism
F ∗ : N 7−→M defined as

F ∗ : Mop ×N −→ Set

(M,N) 7−→ N (FM,N).

I A strong monoidal functor F : M−→ N induces both F∗ and
F ∗, and they form an adjunction (in the bicategory of
metatheories)

M N .
F∗

F∗

a

Fujii (Kyoto) 44 / 54
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Morphisms of metatheories act on metamodels

M,N : metatheory
H = (H, h·, h) : M 7−→ N : morphism of metatheories
(C,Φ): metamodel of M

⇒ We have a metamodel (C,HΦ) of N defined as:

HΦ: N op × Cop × C −→ Set

(N,A,B) 7−→
∫ M∈M

H(N,M)× ΦM(A,B).

MMod(−) extends to a pseudofunctor from the bicategory of
metatheories to the 2-category of 2-categories 2-Cat.
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Isomorphisms between categories of models

M,N : metatheory
F : M−→ N : strong monoidal functor
T: theory in M
(C,Φ): metamodel of N

We can take ...

I the category of models Mod(F∗T, (C,Φ)) (using N );

I the category of models Mod(T, (C,F ∗Φ)) (using M).

By the 2-adjunction

MMod(M) MMod(N ),

F∗

F∗

a

these two categories of models are canonically isomorphic.
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Isomorphisms between categories of models

Example

[F,Set]: the metatheory of clones
[Set,Set]: the metatheory of monads on Set

Using the inclusion functor J : F −→ Set, we obtain a strong
monoidal functor LanJ : [F,Set] −→ [Set,Set].

T: clone = theory in [F,Set]
(Set,Φ): the standard Set-metamodel of [Set,Set]

We have:

I LanJ∗T: the finitary monad corresponding to T;

I (Set,LanJ
∗Φ): the standard Set-metamodel of [F,Set].

⇒ The classical result on compatibility of semantics of clones
(= Lawvere theories) and monads on Set [Linton, 1965].
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The category of models

M = (M, I ,⊗): metatheory; T = (T , e,m): theory in M;
(C,Φ): metamodel of M
We obtain a category

Mod(T, (C,Φ)) (or, Mod(T, C) for short),

a functor
Mod(T, C)

C

U

and a natural transformation

Mod(T, C)

C

Mod(T, C)

C

U U

HomMod(T,C)

ΦT

u
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The category of models

Mod(T, C)

C

Mod(T, C)

C

U U

Hom

ΦT

ΦT⊗T

u

Φm

=

Mod(T, C)

C

Mod(T, C)

C

Mod(T, C)

C

U U U

Hom Hom

ΦT ΦT

ΦT⊗T

u u

φT ,T
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The category of models

Mod(T, C)

C

Mod(T, C)

C

U U

Hom

ΦT

ΦI

u

Φe

=

Mod(T, C)

C

Mod(T, C)

C

U U

Hom

Hom

ΦI

U

φ·

In fact, (Mod(T, C),U, u) is the universal one as such.

=⇒ What is a suitable language to express this universality?
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Categories of models as double limits

Definition ([Grandis–Paré 1999])

The pseudo double category Prof

I object: category;

I vertical 1-cell: functor; (G ◦ H) ◦ K = G ◦ (H ◦ K )

I horizontal 1-cell: profunctor; (X ◦ Y ) ◦ Z ∼= X ◦ (Y ◦ Z )

I square: natural transformation.

Monoidal category M defines a vertically trivial (one object, one
vertical 1-cell) pseudo double category HΣM.
(Mod(T, (C,Φ)),U, u) is the double limit [Grandis–Paré 1999] of the
lax double functor

HΣ(∆op)
Top

−→ HΣ(Mop)
Φ−→ Prof .
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Conclusion

I Unified account of various notions of algebraic theory and
their semantics.

I Morphism of metatheories as a uniform method to compare
different notions of algebraic theory.

I Strong monoidal functor 7→ adjoint pair of morphisms 7→
isomorphisms of categories of models.

Future work:
I Clearer understanding of the scope of our framework.

I In particular, intrinsic characterisation of the forgetful functors
U : Mod(T, (C,Φ)) −→ C arising in our framework (a Beck
type theorem).

I Incorporate various constructions on algebraic theories: sums,
distributive laws, tensor products, ...
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The relation between action and enrichment

According to a categorical folklore [Kelly, Gordon–Power, ...]:

Proposition

M = (M, I ,⊗): monoidal category (metatheory); C: category

1. ∗ : M×C −→ C: oplax left action s.t. for each C ∈ C

M C
(−) ∗ C

∃ 〈C ,−〉

a

.

Then 〈−,−〉 defines an enrichment.

2. 〈−,−〉 : Cop × C −→M: enrichment s.t. for each C ∈ C

M C
∃ (−) ∗ C

〈C ,−〉

a

.

Then ∗ defines an oplax left action.

Fujii (Kyoto) 55 / 54



The relation between action and enrichment

Proposition

M = (M, I ,⊗): metatheory; T = (T , e,m): theory in M
(C, ∗ : M×C −→ C): oplax action
(C, 〈−,−〉 : Cop × C −→M): enrichment

If for each C ∈ C

M C
(−) ∗ C

〈C ,−〉

a
(compatible with structure morphisms δ, ε,M, j) then

a model γ : T ∗ C −→ C (via oplax action)

a model χ : T −→ 〈C ,C 〉 (via enrichment).

So Mod(T, (C, ∗)) ∼= Mod(T, (C, 〈−,−〉)).
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The relation between action and enrichment

Example

([F,Set], I , •): the metatheory of clones

For each S ∈ Set

[F,Set] Set

(−) ∗ S

〈S ,−〉

a
where

X ∗ S =

∫ [m]∈F

Xm × Sm

and
〈S ,R〉m = Set(Sm,R) .
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