Right adjoints to operadic restriction functors arXiv:1906.12275

P. Hackney¹ G.C. Drummond-Cole² Category Theory 2019

¹Department of Mathematics University of Louisiana at Lafayette Lafayette, Louisiana, USA

²Center for Geometry and Physics Institute for Basic Science Pohang, Republic of Korea There is an unexpected right adjoint (Templeton 2003)

$$\bigoplus_{\phi_*} \mathsf{Opd} \bigoplus_{\phi_*} \mathsf{Opd} \bigoplus_{\phi_*} \mathsf{Cyd}$$

which may be described at an operad P by

$$(\phi_*P)(n) = \prod_{i=0}^n P(n) = \hom_{\Sigma_n}(\Sigma_{n+1}, P(n)).$$

When do such operadic right Kan extensions exist?

Main theorem (Monochrome version)

= 20)

If P is an operad, let |P| denote the underlying monoid.

Monoidal extension An operad map $P \rightarrow Q$ is a *monoidal extension* just when

$$P \circ_{|P|} |Q| \to Q \circ_{|Q|} |Q| \cong Q$$

is an isomorphism.

Theorem (H & Drummond-Cole 2019) Let $\phi : P \rightarrow Q$ be a map between (monochrome) operads. The restriction functor

 $\phi^* : \operatorname{Alg}(Q) \to \operatorname{Alg}(P)$

admits a right adjoint if and only if ϕ is a monoidal extension.

Monoidal extension

An operad map $P \rightarrow Q$ is a monoidal extension just when

$$P \circ_{|P|} |Q| \to Q \circ_{|Q|} |Q| \cong Q$$

is an isomorphism.

Isomorphism of underlying monoids If $|P| \rightarrow |Q|$ is an isomorphism, then $P \rightarrow Q$ is a monoidal extension if and only if it is an isomorphism.

Standard non-example

The inclusion functor from commutative monoids to associative monoids does not admit a right adjoint.

Let $\mathbb{D}\subseteq \mathbb{R}^2$ be the closed unit disk.

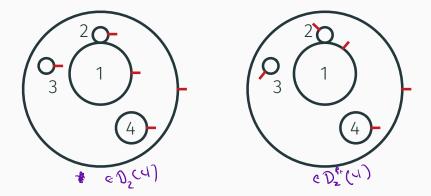
$$D_2(n) \subseteq D_2^{fr}(n) \subseteq \left\{ f : \prod_{k=1}^n \mathbb{D} \to \mathbb{D} \right\}$$

- Each $f_k : \mathbb{D} \to \mathbb{D}$ is an embedding.
- $f_k(\mathbb{D}) \cap f_j(\mathbb{D}) \subseteq f_k(\partial(\mathbb{D}))$ for $k \neq j$ as a
- $f \in D_2(n)$ when each f_k is an affine map $f_k(\mathbf{x}) = a\mathbf{x} + \mathbf{b}$
- $f \in D_2^{fr}(n)$ when each f_k is a rotation followed by an affine

Observation

The inclusion $D_2 \rightarrow D_2^{fr}$ is a monoidal extension.

New Example: Little Disks, Framed Little Disks

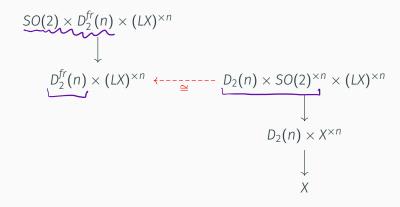


The inclusion $D_2 \rightarrow D_2^{fr}$ is a monoidal extension.

New Example: Little Disks, Framed Little Disks

If X is a D_2 -algebra, then the free loop space $LX = Map(S^1, X)$ realizes the right adjoint.

- $D_2^{fr}(n) \times (LX)^{\times n} \to LX = Map(SO(2), X)$
- The adjoint to the level *n* action takes the form:



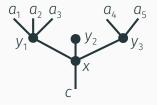
Objects: Sets named A, B, C, etc.

(A, B) Collections:

- $S_A = \{ \sigma : \underline{a} = (a_1, \dots, a_n) \rightarrow (a_{\sigma(1)}, \dots, a_{\sigma(n)}) = \underline{a}\sigma \}$
- (A, B) collection Y: functor $S_A \times B \rightarrow Set$

Horizontal Composition

- · \circ : (B, C)-Coll × (A, B)-Coll → (A, C)-Coll
- Elements of $X \circ Y$



- $(-) \circ Y : (B, C)$ -Coll $\rightarrow (A, C)$ -Coll has a right adjoint (Kelly)
- $X \circ (-) : (A, B)$ -Coll $\rightarrow (A, C)$ -Coll only has a right adjoint, denoted by $\langle X, \rangle$, when X is concentrated in arity one

$$\langle X, Z \rangle (\underline{a}; b) = \prod_{c \in C} \operatorname{hom} (X(b; c), Z(\underline{a}; c))$$

An *A*-colored operad *P* is a monoid in the monoidal category of (*A*, *A*)-collections:

$$\mu: P \circ P \to P \qquad \eta: \mathbf{1}_{A} \to P$$

Colored operads concentrated in arity one are categories.

$f: A \rightarrow B$ a map of sets

Two collections concentrated in arity one:

- (A, B) collection also called f with f(a; f(a)) = *
- (B,A) collection called \overline{f} with $\overline{f}(f(a); a) = *$

We have

• $(f \circ \overline{f})(b; b) = f^{-1}(b)$ (otherwise empty)

• if f(a') = f(a), then $(\overline{f} \circ f)(a'; a) = *$ (otherwise empty) Conclusion $f \dashv \overline{f}$ sing $\epsilon_f : f \circ \overline{f} \to \mathbf{1}_B$ and $\eta_f : \mathbf{1}_A \to \overline{f} \circ f$

Definition

- A map of operads $\phi : (A, P) \rightarrow (B, Q)$ consists of a
 - function $f: A \rightarrow B$
 - map of monoids $P \rightarrow \overline{f} \circ Q \circ f$ in (A, A) collections
- By adjointness, the bottom is equivalent to a map $P \circ \overline{f} \rightarrow \overline{f} \circ Q$ of (B,A) collections

|-| from operads to categories.

Actions

• If $\phi : (A, P) \to (B, Q)$ is a map of operads, then $\overline{f} \circ Q$ is a P-Q bimodule.

$$p_{\bullet} \mathfrak{F}_{\circ} \mathfrak{Q} \longrightarrow \mathfrak{F}_{\circ} \mathfrak{Q} \circ \mathfrak{Q} \longrightarrow \mathfrak{F}_{\circ} \mathfrak{Q}$$

• An algebra over (A, P) is nothing but an (\emptyset, A) -collection along with a left action by *P*.

ę×

Special case: Q = |Q| is concentrated in arity one. Then $\overline{f} \circ |Q|$ is a |P| - |Q| bimodule $\operatorname{Set}^{(P)}$ $\operatorname{Set}^{(Q)}$ We have an adjunction $R : \operatorname{Alg}(|P|) \hookrightarrow \operatorname{Alg}(|Q|) : L$ with

$$R(-) = \hom_{|P|}(\overline{f} \circ |Q|, -) \subseteq \langle \overline{f} \circ |Q|, -\rangle$$

is right adjoint to

$$L(-) = (\bar{f} \circ |Q|) \circ_{|Q|} (-) \cong \bar{f} \circ (-)$$

Main theorem (Colored version)

If $\phi : (A, P) \to (B, Q)$ is a map of operads, then the composite $P \circ \overline{f} \circ |Q| \to P \circ \overline{f} \circ Q \to \overline{f} \circ Q$ descends to

Definition

 ϕ is a *categorical extension* when (\heartsuit) is an isomorphism

Theorem (H & Drummond-Cole 2019) Let $\phi : (A, P) \rightarrow (B, Q)$ be a map between colored operads. The restriction functor

$$\phi^*: \operatorname{Alg}(Q) \to \operatorname{Alg}(P)$$

admits a right adjoint ϕ_* if and only if ϕ is a categorical extension.

Example (Operads and Cyclic Operads)

- R and T are \mathbb{N} -colored operads
- \cdot Operations in T are trees with total orderings on
 - set of vertices
 - vertex neighborhoods
 - boundaries
- R ⊆ T consists of *rooted* trees: root of tree is first edge of boundary, root of vertex is first edge in the vertex neighborhood, and these are compatible
- $R(n; n) = \Sigma_n$ and $T(n; n) = \Sigma_{n+1}$
- Alg(R) = Opd and Alg(T) = Cyc
- $R \subseteq T$ is a categorical extension

Non-Example (Nonsymmetric Operads and Operads)

- $P \subseteq R$ are the *planar* rooted trees.
- P(n; n) = * and $R(n; n) = \Sigma_n$
- Alg(P) = nsOpd and Alg(R) = Opd
- Not a categorical extension:

