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vertical horizontal
units units

interchange subtlety

GPS strict strict weak

JK strict weak strict not doubly degenerate

C weak strict strict need weak vertical associativity

what we enrich in

type of enrichment

type of ⊗
or type of functors

“Law of conservation of complicatedness”

We enrich in (Bicats ,×):

• bicategories

• strict functors

• ordinary products

• strict enrichment

We write Bicats-Cat.
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• construct a ddBicats-category ΣB , and

• a braided monoidal equivalence B ΣB .
∼

How do we get horizontal and vertical composition from ⊗?

For tricategories: Put both as ⊗ and get interchange from the braiding γ

Issues: 1. We can’t have both compositions strict so they can’t both be ⊗.

2. We want interchange to be strict so it can’t be γ.

Solution: Do “weakification” for the vertical direction.
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Follows from: F1 is monoidal equivalent to the discrete (N,+, 0).

So • F1 splits into connected components Cn “bracketed words of length n”.

• Each Cn ≃ 1 so all bracketings are uniquely isomorphic “all diagrams commute”.

Given a monoidal category M we construct stM “strictification”

• objects: words in the objects of M (unbracketed)

• morphisms: evaluate words in M then take morphisms from M .

Question: How do we evaluate strict words in a weak monoidal category?

Answer: Use cliques.
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Problem: Both weak.

Solution: Take “horizontal path” classes
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·
a

·
b
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stB ΣB

Objects: strings of
objects of B

configurations of points labelled by
objects of B

Morphisms:

• find associated clique in FB

of bracketed words in B of flattened configurations
with flattening braids

• evaluate it as a clique in B and take clique maps in B
these are the
morphisms of ΣB

• morphisms represent the same clique map if they differ only by

coherence constraints the correct factorising braid
15.
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3. Construction of ΣB : example morphism

stB ΣB

abc abc
?

rep by (ab)c (ab)c
id

or (ab)c a(bc)

id

— same clique map
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id
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NB: identity in ΣB can be represented
by a non-identity in B

and vice versa
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3. Construction of ΣB : technically

Write O for the objects of B , FO for the free braided monoidal category on O.

We have functors

Π1C (I
2,O) FO

F
∼ B

G

eval

inducing functors on clique categories

˜Π1C (I 2,O) F̃O B̃
F∗ G!

ΣB is defined by

• objects: horizontal path cliques of Π1C (I
2,O)

• morphisms:

ΣB(X ,Y ) := B̃(G!F
∗X ,G!F

∗Y )

17.
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f ⊗ g ⊗ h ⊗ i
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f ⊗ h ⊗ g ⊗ i

1⊗ γ ⊗ 1
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— same clique map

Interchange is strict but still comes from the braiding.
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3. Monoidal equivalence

This isomorphism is a clique map represented by an identity.
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Main ideas

• Putting points in boxes gives us enough control.

• Using cliques exchanges the roles of units and interchange.

Main results

• We have Σ on 0-cells. ddBicats-Cat wBrMonCat

U

Σ
• It is biessentially surjective on objects.

Weak vertical composition is enough to produce braidings.
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5. Further work

Done but no space in talk:

• Define weak functors of ddBicats-categories using abstract EH (CT18).

• Assemble these into a 2-category with icon-like transformations.

• Extend Σ to a pseudo-functor of 2-categories.

• Show that we have a biequivalence of 2-categories.

• Analogous results for Trimble 3-categories.

Future:

• Rotate and get weak horizontal composition and strict vertical.

• Produce free doubly-degenerate structures by composing adjunctions.

• The non-degenerate case.

• Higher dimensions.
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