Set-theoretic remarks on a possible definition of elementary ∞ -topos

Giulio Lo Monaco

Masaryk University

Category Theory Edinburgh, Scotland

11 July 2019

CT2019 1 / 14

▲ @ ▶ ▲ ∋ ▶

Definition

An ∞ -category \mathcal{X} is called a geometric ∞ -topos if there is a small ∞ -category \mathcal{C} and an adjunction

$$\mathcal{P}(\mathcal{C}) \xrightarrow[i]{} \stackrel{L}{\underset{i}{\longleftarrow}} \mathcal{X}$$

where i is full and faithful, $L \circ i$ is accessible and L preserves all finite limits.

Definition

An ∞ -category \mathcal{X} is called a geometric ∞ -topos if there is a small ∞ -category \mathcal{C} and an adjunction

$$\mathcal{P}(\mathcal{C}) \xrightarrow[i]{} \stackrel{L}{\underset{i}{\longleftarrow}} \mathcal{X}$$

where i is full and faithful, $L \circ i$ is accessible and L preserves all finite limits.

In particular, every geometric ∞ -topos is presentable.

Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.

Let $f: X \to Y$ a morphism in an ∞ -category $\mathcal E$ with pullbacks.

• A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.

(人間) トイヨト イヨト

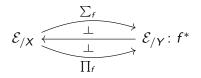
Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.

- A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.
- A dependent product along f, if it exists, is a right adjoint to the base change f^{*} : E_{/Y} → E_{/X}.

< 回 ト < 三 ト < 三 ト

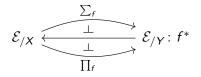
Let $f: X \to Y$ a morphism in an ∞ -category $\mathcal E$ with pullbacks.

- A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.
- A dependent product along f, if it exists, is a right adjoint to the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.



Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.

- A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.
- A dependent product along f, if it exists, is a right adjoint to the base change f^{*} : E_{/Y} → E_{/X}.

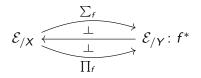


Remark

Dependent sums always exist by universal property of pullbacks.

Let $f: X \to Y$ a morphism in an ∞ -category \mathcal{E} with pullbacks.

- A dependent sum along f is a left adjoint of the base change $f^* : \mathcal{E}_{/Y} \to \mathcal{E}_{/X}$.
- A dependent product along f, if it exists, is a right adjoint to the base change f^{*} : E_{/Y} → E_{/X}.



Remark

Dependent sums always exist by universal property of pullbacks.

Proposition

In a geometric ∞ -topos all dependent products exist.

Let S be a class of morphisms in an ∞ -category \mathcal{E} , which is closed under pullbacks.

A classifier for the class S is a morphism $t : \overline{U} \to U$ such that for every object X the operation of pulling back defines an equivalence of ∞ -groupoids

$$\mathsf{Map}(X,U)\simeq (\mathcal{E}^\mathcal{S}_{/X})^\sim$$

Let S be a class of morphisms in an ∞ -category \mathcal{E} , which is closed under pullbacks.

A classifier for the class S is a morphism $t: \overline{U} \to U$ such that for every object X the operation of pulling back defines an equivalence of ∞ -groupoids

$$\mathsf{Map}(X,U)\simeq (\mathcal{E}^{\mathcal{S}}_{/X})^{\sim}$$

Theorem (Rezk)

In a geometric ∞ -topos, there are arbitrarily large cardinals κ such that the class S_{κ} of relatively κ -compact morphisms has a classifier.

Elementary ∞ -toposes

Definition (Shulman)

An elementary ∞ -topos is an ∞ -category $\mathcal E$ such that

- \mathcal{E} has all finite limits and colimits.
- **2** \mathcal{E} is locally Cartesian closed.
- Solution The class of all monomorphisms in $\mathcal E$ admits a classifier.

Elementary ∞ -toposes

Definition (Shulman)

An elementary ∞ -topos is an ∞ -category $\mathcal E$ such that

- \mathcal{E} has all finite limits and colimits.
- 2 E is locally Cartesian closed.
- It is a class of all monomorphisms in E admits a classifier.
- Solution For each morphism f in E there is a class of morphisms S ∋ f such that S has a classifier and is closed under limits and colimits taken in overcategories and under dependent sums and products.

Elementary ∞ -toposes

Definition (Shulman)

An elementary ∞ -topos is an ∞ -category $\mathcal E$ such that

- **1** \mathcal{E} has all finite limits and colimits.
- 2 E is locally Cartesian closed.
- The class of all monomorphisms in E admits a classifier.
- So For each morphism f in E there is a class of morphisms S ∋ f such that S has a classifier and is closed under limits and colimits taken in overcategories and under dependent sums and products.

We will only focus on a subaxiom of (4):

Definition

We say that a class of morphisms S satisfies (DepProd) if it has a classifier and it is closed under dependent products

Uniformization

We will need a fundamental result:

Theorem (Adámek, Rosický for the 1-dimensional case)

Given a small family $(f_i : \mathcal{K}_i \to \mathcal{L}_i)_{i \in I}$ of accessible functors between presentable ∞ -categories, there are arbitrarily large cardinals κ such that all functors f_i 's preserve κ -compact objects.

Uniformization

We will need a fundamental result:

Theorem (Adámek, Rosický for the 1-dimensional case)

Given a small family $(f_i : \mathcal{K}_i \to \mathcal{L}_i)_{i \in I}$ of accessible functors between presentable ∞ -categories, there are arbitrarily large cardinals κ such that all functors f_i 's preserve κ -compact objects.

Example

 We may assume that κ-compact objects in a presheaf ∞-category are precisely the objectwise κ-compact presheaves. We will need a fundamental result:

Theorem (Adámek, Rosický for the 1-dimensional case)

Given a small family $(f_i : \mathcal{K}_i \to \mathcal{L}_i)_{i \in I}$ of accessible functors between presentable ∞ -categories, there are arbitrarily large cardinals κ such that all functors f_i 's preserve κ -compact objects.

Example

- We may assume that κ-compact objects in a presheaf ∞-category are precisely the objectwise κ-compact presheaves.
- Given a diagram shape *R*, we may assume that *κ*-compact objects are stable under *R*-limits.

We will need a fundamental result:

Theorem (Adámek, Rosický for the 1-dimensional case)

Given a small family $(f_i : \mathcal{K}_i \to \mathcal{L}_i)_{i \in I}$ of accessible functors between presentable ∞ -categories, there are arbitrarily large cardinals κ such that all functors f_i 's preserve κ -compact objects.

Example

- We may assume that κ-compact objects in a presheaf ∞-category are precisely the objectwise κ-compact presheaves.
- Given a diagram shape *R*, we may assume that *κ*-compact objects are stable under *R*-limits.
- We may assume that many such properties hold for the same cardinal.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

Fixing a Grothendieck universe \mathcal{U} , every geometric ∞ -topos satisfies (DepProd) if and only if there are unboundedly many inaccessible cardinals below the cardinality of \mathcal{U} .

Theorem

Fixing a Grothendieck universe \mathcal{U} , every geometric ∞ -topos satisfies (DepProd) if and only if there are unboundedly many inaccessible cardinals below the cardinality of \mathcal{U} .

First, prove \Leftarrow .

Theorem

Fixing a Grothendieck universe \mathcal{U} , every geometric ∞ -topos satisfies (DepProd) if and only if there are unboundedly many inaccessible cardinals below the cardinality of \mathcal{U} .

First, prove \Leftarrow .

Step 1. In the ∞ -category S of spaces, if κ is inaccessible then κ -compact objects are stable under exponentiation.

Step 2. In $\mathcal{P}(\mathcal{C})$, given presheaves F and G, their exponential F^G is given by the formula

$${\sf F}^{\sf G}({\sf C}) = \int_{D\in {\cal C}} {\sf Map}({\sf Map}(D,{\sf C}) imes {\sf G}(D),{\sf F}(D))$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Step 2. In $\mathcal{P}(\mathcal{C})$, given presheaves F and G, their exponential F^G is given by the formula

$${\sf F}^{\sf G}({\sf C}) = \int_{D\in {\cal C}} {\sf Map}({\sf Map}(D,{\sf C}) imes {\sf G}(D),{\sf F}(D))$$

By uniformization, we may choose a cardinal κ such that:

κ-compactness is detected objectwise

- 4 同 6 4 日 6 4 日 6

Step 2. In $\mathcal{P}(\mathcal{C})$, given presheaves F and G, their exponential F^G is given by the formula

$$F^G(C) = \int_{D \in \mathcal{C}} \mathsf{Map}(\mathsf{Map}(D, C) imes G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact

Step 2. In $\mathcal{P}(\mathcal{C})$, given presheaves F and G, their exponential F^G is given by the formula

$$F^G(C) = \int_{D \in \mathcal{C}} \mathsf{Map}(\mathsf{Map}(D, C) imes G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact
- κ-compact spaces are stable under binary products

Step 2. In $\mathcal{P}(\mathcal{C})$, given presheaves F and G, their exponential F^G is given by the formula

$$F^G(C) = \int_{D \in \mathcal{C}} \mathsf{Map}(\mathsf{Map}(D, C) imes G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact
- κ-compact spaces are stable under binary products
- κ -compact spaces are stable under exponentiation (Step 1)

Step 2. In $\mathcal{P}(\mathcal{C})$, given presheaves F and G, their exponential F^G is given by the formula

$$F^G(C) = \int_{D \in \mathcal{C}} \mathsf{Map}(\mathsf{Map}(D, C) imes G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact
- κ-compact spaces are stable under binary products
- κ-compact spaces are stable under exponentiation (Step 1)
- κ -compact spaces are stable under C-ends

Step 2. In $\mathcal{P}(\mathcal{C})$, given presheaves F and G, their exponential F^G is given by the formula

$$F^G(C) = \int_{D \in \mathcal{C}} \mathsf{Map}(\mathsf{Map}(D, C) imes G(D), F(D))$$

- κ-compactness is detected objectwise
- all representables are κ -compact
- κ-compact spaces are stable under binary products
- κ-compact spaces are stable under exponentiation (Step 1)
- κ -compact spaces are stable under C-ends
- $\Rightarrow \kappa$ -compact presheaves are stable under exponentiation.

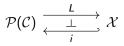
Step 3. Given an adjunction

$$\mathcal{P}(\mathcal{C}) \xrightarrow[i]{} \stackrel{L}{\underset{i}{\longleftarrow}} \mathcal{X}$$

making \mathcal{X} a geometric ∞ -topos, choose κ such that (Step 2) holds in $\mathcal{P}(\mathcal{C})$.

イロト 人間ト イヨト イヨト

Step 3. Given an adjunction



making \mathcal{X} a geometric ∞ -topos, choose κ such that (Step 2) holds in $\mathcal{P}(\mathcal{C})$.

The properties of $L \dashv i$ will transfer stability of κ -compact objects under exponentiation to \mathcal{X} .

◆ロト ◆帰 ト ◆臣 ト ◆臣 ト ○臣 ○ のへの

Step 4. Given an object $p: Z \to X$ in $\mathcal{X}_{/X}$, its dependent product along a terminal morphism $X \to *$ is given by

$$\prod_{X} p = Z^X \times_{X^X} \{p\}$$

イロト イポト イヨト イヨト 二日

Step 4. Given an object $p: Z \to X$ in $\mathcal{X}_{/X}$, its dependent product along a terminal morphism $X \to *$ is given by

$$\prod_{X} p = Z^X \times_{X^X} \{p\}$$

Choose κ such that (Step 3) holds and κ -compact objects are stable under pullbacks

(人間) システン ステン・ ラ

Step 4. Given an object $p: Z \to X$ in $\mathcal{X}_{/X}$, its dependent product along a terminal morphism $X \to *$ is given by

$$\prod_{X} p = Z^X \times_{X^X} \{p\}$$

Choose κ such that (Step 3) holds and κ -compact objects are stable under pullbacks \Rightarrow relatively κ -compact morphisms are stable under dependent products along terminal morphisms.

Step 4. Given an object $p: Z \to X$ in $\mathcal{X}_{/X}$, its dependent product along a terminal morphism $X \to *$ is given by

$$\prod_{X} p = Z^X \times_{X^X} \{p\}$$

Choose κ such that (Step 3) holds and κ -compact objects are stable under pullbacks \Rightarrow relatively κ -compact morphisms are stable under dependent products along terminal morphisms.

Step 5. For generic dependent products, decompose the codomain as a colimit of compact objects Y_i 's and then choose κ such that (Step 4) holds in all ∞ -toposes $\mathcal{X}_{/Y_i}$.

Now prove \Rightarrow .

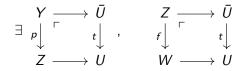
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Now prove \Rightarrow . It suffices to prove it assuming that S satisfies (*DepProd*).

(日) (周) (三) (三)

Now prove \Rightarrow . It suffices to prove it assuming that S satisfies (*DepProd*).

For a discrete space X, the terminal morphism $X \to *$ is contained in a class S having a classifier $t : \overline{U} \to U$ such that



▲□ ▲ □ ▲ □ ▲ □ ● ● ● ●

Now prove \Rightarrow . It suffices to prove it assuming that S satisfies (*DepProd*).

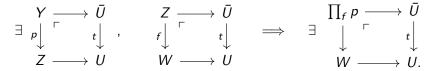
For a discrete space X, the terminal morphism $X \to *$ is contained in a class S having a classifier $t : \overline{U} \to U$ such that



◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ ����

Now prove \Rightarrow . It suffices to prove it assuming that S satisfies (*DepProd*).

For a discrete space X, the terminal morphism $X \to *$ is contained in a class S having a classifier $t : \overline{U} \to U$ such that

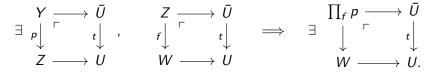


• Assume that all fibers of *t* are discrete.

□ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < つへの</p>

Now prove \Rightarrow . It suffices to prove it assuming that S satisfies (*DepProd*).

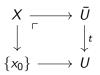
For a discrete space X, the terminal morphism $X \to *$ is contained in a class S having a classifier $t : \overline{U} \to U$ such that



• Assume that all fibers of *t* are discrete.

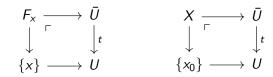
• For each point in U, its fiber along t can be regarded as a set.

◆ロ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ ����



CT2019 12 / 14

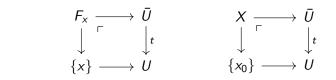
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●



Define $\kappa := \sup_{x \in U} |F_x|$.

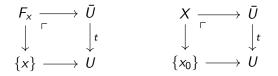
CT2019 12 / 14

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで



Define $\kappa := \sup_{x \in U} |F_x|.$ • $\kappa > |X|.$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

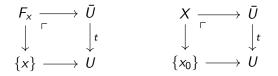


Define $\kappa := \sup_{x \in U} |F_x|$.

- $\kappa > |X|$.
- For $\lambda, \mu < \kappa$, closure under dependent products $\Rightarrow \mu^{\lambda} < \kappa$.

Define $\kappa := \sup_{x \in U} |F_x|$.

- $\kappa > |X|$.
- For $\lambda, \mu < \kappa$, closure under dependent products $\Rightarrow \mu^{\lambda} < \kappa$.
- In non-trivial cases, $\sum_{i \in I} \alpha_i \leq \prod_{i \in I} \alpha_i$



Define $\kappa := \sup_{x \in U} |F_x|$.

- $\kappa > |X|$.
- For $\lambda, \mu < \kappa$, closure under dependent products $\Rightarrow \mu^{\lambda} < \kappa$.
- In non-trivial cases, $\sum_{i \in I} \alpha_i \leq \prod_{i \in I} \alpha_i \Rightarrow \kappa$ is regular.

Definition

We call a cardinal μ 1-inaccessible if it is inaccessible and there are unboundedly many inaccessibles below it.

Definition

We call a cardinal μ 1-inaccessible if it is inaccessible and there are unboundedly many inaccessibles below it.

Assume the existence of a 1-inaccessible cardinal μ inside the Grothendieck universe.

Definition

We call a cardinal μ 1-inaccessible if it is inaccessible and there are unboundedly many inaccessibles below it.

Assume the existence of a 1-inaccessible cardinal μ inside the Grothendieck universe.

Given a geometric ∞ -topos \mathcal{X} , take

 $\mathcal{X}^{\mu} \subset \mathcal{X}.$

Definition

We call a cardinal μ 1-inaccessible if it is inaccessible and there are unboundedly many inaccessibles below it.

Assume the existence of a 1-inaccessible cardinal μ inside the Grothendieck universe.

Given a geometric ∞ -topos \mathcal{X} , take

 $\mathcal{X}^{\mu} \subset \mathcal{X}.$

 $\Rightarrow \mathcal{X}^{\mu}$ is not a geometric ∞ -topos (it doesn't have all small colimits), but it is an elementary ∞ -topos.

Thank you!

E シュペ CT2019 14 / 14

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト