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Inverse monoids

Every x has x† with x = xx†x, and x†xy†y = y†yx†x

I any group
I any semilattice
I untyped reversible computation
I partial injections on fixed set
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(Commutative) inverse monoids

Theorem (Ehresmann-Schein-Nambooripad):
{inverse monoids} ' {inductive groupoids}

(groupoid in category of posets,
étale for Alexandrov topology,

objects are semilattice)

Theorem (Jarek):
{commutative inverse monoids} ' {semilattices of abelian groups}

(functor from a semilattice to category of abelian groups)
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Inverse categories

Every f has f † with f = ff †f , and f †fg†g = g†gf †f

I fundamental groupoid of pointed topological space
I sets and partial injections
I typed reversible computation

Theorem (DeWolf-Pronk):
{inverse categories} ' {locally complete inductive groupoids}

(groupoid in category of posets,
étale for Alexandrov topology,

objects are coproduct of semilattices)
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Structure theorems

objects general case commutative case

one inductive groupoid semilattice of abelian groups
many locally inductive groupoid semilattice of compact groupoids
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Semilattices of categories

Semilattice is partial order with greatest lower bounds s ∧ t and >

Semilattice over a subcategory V ⊆ Cat is functor F : Sop → V
where S is semilattice, all categories F (s) have the same objects

Sop

S′op

V
F

F ′

Theorem (Jarek): cInvMon ' SLat[Ab]
M 7→ S = {s ∈M | ss† = s}

F (s) = {x ∈M | xx† = s}∐
s F (s) ←[ F
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The one-object case
{commutative inverse monoids} ' {one-object compact inverse cats}

Symmetric monoidal, every object has dual
η : I → A∗ ⊗A with (ε⊗ 1) ◦ (1⊗ η) = 1 for ε = σ ◦ η†

I A and A∗ adjoint in one-object 2-category
I any abelian group as discrete monoidal category
I fundamental groupoid of pointed topological space

=

In any monoidal category:
I scalars I → I form commutative monoid
I I dual to itself

7 / 15



The one-object case
{commutative inverse monoids} ' {one-object compact inverse cats}

Symmetric monoidal, every object has dual
η : I → A∗ ⊗A with (ε⊗ 1) ◦ (1⊗ η) = 1 for ε = σ ◦ η†

I A and A∗ adjoint in one-object 2-category
I any abelian group as discrete monoidal category
I fundamental groupoid of pointed topological space

=

In any monoidal category:
I scalars I → I form commutative monoid
I I dual to itself

7 / 15



The one-object case
{commutative inverse monoids} ' {one-object compact inverse cats}

Symmetric monoidal, every object has dual
η : I → A∗ ⊗A with (ε⊗ 1) ◦ (1⊗ η) = 1 for ε = σ ◦ η†

I A and A∗ adjoint in one-object 2-category
I any abelian group as discrete monoidal category
I fundamental groupoid of pointed topological space

=

In any monoidal category:
I scalars I → I form commutative monoid
I I dual to itself

7 / 15



Compact categories
I scalar multiplication of f : A→ B with s : I → I

A B

I ⊗A I ⊗B

s • f

' '
s⊗ f

fs

I dual morphism of f : A→ B

f∗ = (1⊗ ε) ◦ (1⊗ f ⊗ 1) ◦ (η ⊗ 1) : B∗ → A∗ f

I trace of f : A→ A

Tr(f) = ε ◦ (f ⊗ 1) ◦ η : I → I f

tr(f) = Tr(f)∗
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Endomorphisms
Lemma: endomorphism f in compact inverse category is tr(f) • 1

Proof :

1. because h = hh†h: = = =

2. gg† and hh† commute: = = =

3. by 1 and 2: = = =

4. therefore: f = f∗ = f∗ = tr(f)
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Arbitrary morphisms

Corollary: compact dagger category is compact inverse category
⇐⇒

every morphism f satisfies f = tr(ff †) • f

Proof: =⇒: ff † = tr(ff †ff †) • 1 = tr(ff †) • 1

⇐=: restriction category with f = tr(ff †) • 1
every map is restriction isomorphism
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Semilattices of groupoids

Theorem: If C is compact inverse category

I S = {s : I → I | ss† = s} is semilattice
I s ∈ S induces compact groupoid F (s) with same objects,

and morphisms F (s)(A,B) = {f : A→ B | tr(ff †) = s}
I semilattice F : Sop → CptGpd of compact groupoids

If F : Sop → CptGpd is semilattice of compact groupoids

I inverse category C with same objects as F (>),
and morphisms C(A,B) =

∐
s∈S F (s)(A,B)

Equivalence CptInvCat ' SLat[CptGpd]
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2-categories

Redefinition of SLat[V] as 2-category:

Sop

S′op

V

F

F ′

ϕ ϕ′≤ θ′θ
γ

Write SLat=[V] for full subcategory where all F (s) same objects

Lemma: SLat[CptGpd] ' SLat=[CptGpd]
(Compare inductive groupoids)
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Compact groupoids

Proposition [Baez-Lauda]: compact groupoids C are, up to ':
I abelian group G of isomorphism classes of C under ⊗, I, A∗

I abelian group H of scalars C(I, I) under ◦, 1, f †

I conjugation action G×H → H given by (A, s) 7→ tr(A⊗ s)
I 3-cocycle G×G×G→ H given by (A,B,C) 7→ Tr(αA,B,C)

Proof: make C skeletal, strictify everything but associators

Theorem: CptInvCat ' SLat[Cocycle]
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Traced inverse categories

What do traced inverse categories look like?

TrDagCat CptDagCat

TrInvCat

CptInvCat⊥ ⊥
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Open ends

I SLat[V] as completion procedure?

I Bratelli diagrams?

I description internal to Rel?
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