Compact inverse categories

Robin Cockett Chris Heunen

Inverse monoids

Every x has x^{\dagger} with $x = xx^{\dagger}x$, and $x^{\dagger}xy^{\dagger}y = y^{\dagger}yx^{\dagger}x$

▶ any group

- ▶ any semilattice
- ▶ untyped reversible computation
- ▶ partial injections on fixed set

(Commutative) inverse monoids

Theorem (Ehresmann-Schein-Nambooripad):

 $\{\text{inverse monoids}\} \simeq \{\text{inductive groupoids}\}$

(groupoid in category of posets, étale for Alexandrov topology, objects are semilattice)

(Commutative) inverse monoids

Theorem (Ehresmann-Schein-Nambooripad):

 $\{\text{inverse monoids}\} \simeq \{\text{inductive groupoids}\}$

(groupoid in category of posets, étale for Alexandrov topology, objects are semilattice)

Theorem (Jarek):

 $\{\text{commutative inverse monoids}\} \simeq \{\text{semilattices of abelian groups}\}\$ (functor from a semilattice to category of abelian groups)

Inverse categories

Every f has f^{\dagger} with $f=ff^{\dagger}f,$ and $f^{\dagger}fg^{\dagger}g=g^{\dagger}gf^{\dagger}f$

- ▶ fundamental groupoid of pointed topological space
- sets and partial injections
- ▶ typed reversible computation

Inverse categories

Every f has f^{\dagger} with $f=ff^{\dagger}f,$ and $f^{\dagger}fg^{\dagger}g=g^{\dagger}gf^{\dagger}f$

- ▶ fundamental groupoid of pointed topological space
- ▶ sets and partial injections
- ▶ typed reversible computation

Theorem (DeWolf-Pronk):

 $\{ \text{inverse categories} \} \simeq \{ \text{locally complete inductive groupoids} \} \\ (\text{groupoid in category of posets}, \\ \text{étale for Alexandrov topology,} \\ \text{objects are coproduct of semilattices})$

Structure theorems

objects	general case	commutative case
one	inductive groupoid	semilattice of abelian groups
many	locally inductive groupoid	semilattice of compact groupoids

Semilattices of categories

Semilattice is partial order with greatest lower bounds $s \wedge t$ and \top

Semilattice over a subcategory $\mathbf{V} \subseteq \mathbf{Cat}$ is functor $F: \mathbf{S}^{\mathrm{op}} \to \mathbf{V}$ where **S** is semilattice, all categories F(s) have the same objects

Semilattices of categories

Semilattice is partial order with greatest lower bounds $s \wedge t$ and \top

Semilattice over a subcategory $\mathbf{V} \subseteq \mathbf{Cat}$ is functor $F: \mathbf{S}^{\mathrm{op}} \to \mathbf{V}$ where **S** is semilattice, all categories F(s) have the same objects

Theorem (Jarek): cInvMon \simeq SLat[Ab] $M \mapsto S = \{s \in M \mid ss^{\dagger} = s\}$ $F(s) = \{x \in M \mid xx^{\dagger} = s\}$ $\coprod_{s} F(s) \iff F$

The one-object case

 $\{\text{commutative inverse monoids}\} \simeq \{\text{one-object compact inverse cats}\}$

The one-object case

 $\{\text{commutative inverse monoids}\} \simeq \{\text{one-object compact inverse cats}\}$

Symmetric monoidal, every object has dual $\eta \colon I \to A^* \otimes A$ with $(\varepsilon \otimes 1) \circ (1 \otimes \eta) = 1$ for $\varepsilon = \sigma \circ \eta^{\dagger}$

- A and A^* adjoint in one-object 2-category
- ▶ any abelian group as discrete monoidal category
- ▶ fundamental groupoid of pointed topological space

The one-object case

 $\{\text{commutative inverse monoids}\} \simeq \{\text{one-object compact inverse cats}\}$

Symmetric monoidal, every object has dual $\eta \colon I \to A^* \otimes A$ with $(\varepsilon \otimes 1) \circ (1 \otimes \eta) = 1$ for $\varepsilon = \sigma \circ \eta^{\dagger}$

- A and A^* adjoint in one-object 2-category
- ▶ any abelian group as discrete monoidal category
- ▶ fundamental groupoid of pointed topological space

In any monoidal category:

- ▶ scalars $I \to I$ form commutative monoid
- \blacktriangleright I dual to itself

Compact categories

▶ scalar multiplication of $f: A \to B$ with $s: I \to I$

Compact categories

▶ scalar multiplication of $f: A \to B$ with $s: I \to I$

$$\begin{array}{c} s \bullet f \\ A & & B \\ \simeq \downarrow & & \uparrow \\ I \otimes A & & I \otimes B \end{array}$$

▶ dual morphism of $f: A \to B$

$$f^* = (1 \otimes \varepsilon) \circ (1 \otimes f \otimes 1) \circ (\eta \otimes 1) \colon B^* \to A^*$$

Compact categories

▶ scalar multiplication of $f: A \to B$ with $s: I \to I$

$$\begin{array}{c} s \bullet f \\ A & & B \\ \simeq \downarrow & & \uparrow \\ I \otimes A & & I \otimes B \end{array}$$

• dual morphism of $f: A \to B$

$$f^* = (1 \otimes \varepsilon) \circ (1 \otimes f \otimes 1) \circ (\eta \otimes 1) \colon B^* \to A^*$$

► trace of $f: A \to A$ $\operatorname{Tr}(f) = \varepsilon \circ (f \otimes 1) \circ \eta: I \to I$ $\operatorname{tr}(f) = \operatorname{Tr}(f)^*$

1. because
$$h = hh^{\dagger}h$$
: $\left| \bigcirc = \bigcup_{h=0}^{h=0} \right| = \left| \bigcirc = \right|$

Corollary: compact dagger category is compact inverse category \iff every morphism f satisfies $f = \operatorname{tr}(ff^{\dagger}) \bullet f$

Proof:
$$\Longrightarrow$$
: $ff^{\dagger} = \operatorname{tr}(ff^{\dagger}ff^{\dagger}) \bullet 1 = \operatorname{tr}(ff^{\dagger}) \bullet 1$

 $\iff: \text{restriction category with } \overline{f} = \operatorname{tr}(ff^{\dagger}) \bullet 1$ every map is restriction isomorphism

Semilattices of groupoids

Theorem: If \mathbf{C} is compact inverse category

- $S = \{s \colon I \to I \mid ss^{\dagger} = s\}$ is semilattice
- ▶ $s \in S$ induces compact groupoid F(s) with same objects, and morphisms $F(s)(A, B) = \{f : A \to B \mid tr(ff^{\dagger}) = s\}$
- ▶ semilattice $F: S^{\text{op}} \to \mathbf{CptGpd}$ of compact groupoids

Semilattices of groupoids

Theorem: If \mathbf{C} is compact inverse category

- $S = \{s \colon I \to I \mid ss^{\dagger} = s\}$ is semilattice
- ▶ $s \in S$ induces compact groupoid F(s) with same objects, and morphisms $F(s)(A, B) = \{f : A \to B \mid tr(ff^{\dagger}) = s\}$
- ▶ semilattice $F: S^{\text{op}} \to \mathbf{CptGpd}$ of compact groupoids

If $F \colon S^{\mathrm{op}} \to \mathbf{CptGpd}$ is semilattice of compact groupoids

▶ inverse category **C** with same objects as $F(\top)$, and morphisms $\mathbf{C}(A, B) = \coprod_{s \in S} F(s)(A, B)$

Semilattices of groupoids

Theorem: If \mathbf{C} is compact inverse category

- $S = \{s \colon I \to I \mid ss^{\dagger} = s\}$ is semilattice
- ▶ $s \in S$ induces compact groupoid F(s) with same objects, and morphisms $F(s)(A, B) = \{f : A \to B \mid tr(ff^{\dagger}) = s\}$
- ▶ semilattice $F: S^{\text{op}} \to \mathbf{CptGpd}$ of compact groupoids

If $F \colon S^{\mathrm{op}} \to \mathbf{CptGpd}$ is semilattice of compact groupoids

▶ inverse category **C** with same objects as $F(\top)$, and morphisms $\mathbf{C}(A, B) = \coprod_{s \in S} F(s)(A, B)$

Equivalence $\mathbf{CptInvCat} \simeq \mathbf{SLat}[\mathbf{CptGpd}]$

2-categories

Redefinition of $\mathbf{SLat}[\mathbf{V}]$ as 2-category:

Write $\mathbf{SLat}_{=}[\mathbf{V}]$ for full subcategory where all F(s) same objects

2-categories

Redefinition of $\mathbf{SLat}[\mathbf{V}]$ as 2-category:

Write $\mathbf{SLat}_{=}[\mathbf{V}]$ for full subcategory where all F(s) same objects

Lemma: $SLat[CptGpd] \simeq SLat_{=}[CptGpd]$ (Compare inductive groupoids)

Compact groupoids

$\label{eq:proposition based} \textbf{Proposition [Baez-Lauda]: compact groupoids C are, up to \simeq:}$

- ▶ abelian group G of isomorphism classes of C under \otimes , I, A^{*}
- ▶ abelian group H of scalars $\mathbf{C}(I, I)$ under \circ , 1, f^{\dagger}
- ▶ conjugation action $G \times H \to H$ given by $(A, s) \mapsto tr(A \otimes s)$
- ► 3-cocycle $G \times G \times G \to H$ given by $(A, B, C) \mapsto \text{Tr}(\alpha_{A,B,C})$

Proof: make ${\bf C}$ skeletal, strictify everything but associators

Compact groupoids

$\label{eq:proposition based} \textbf{Proposition [Baez-Lauda]: compact groupoids C are, up to \simeq:}$

- ▶ abelian group G of isomorphism classes of C under \otimes , I, A^{*}
- ▶ abelian group H of scalars $\mathbf{C}(I, I)$ under \circ , 1, f^{\dagger}
- ▶ conjugation action $G \times H \to H$ given by $(A, s) \mapsto tr(A \otimes s)$
- ▶ 3-cocycle $G \times G \times G \to H$ given by $(A, B, C) \mapsto \text{Tr}(\alpha_{A,B,C})$

Proof: make ${\bf C}$ skeletal, strictify everything but associators

Theorem: $CptInvCat \simeq SLat[Cocycle]$

Traced inverse categories

What do traced inverse categories look like?

Open ends

- ▶ **SLat**[**V**] as completion procedure?
- ▶ Bratelli diagrams?
- description internal to Rel?