Weak adjoint functor theorems

Stephen Lack

Macquarie University

CT2019, Edinburgh joint work with John Bourke and Lukáš Vokřínek

ur-AFT

category \mathcal{B} with all limits $U: \mathcal{B} \to \mathcal{A}$ preserves them U has left adjoint

ur-AFT

category \mathcal{B} with all limits $U: \mathcal{B} \to \mathcal{A}$ preserves them U has left adjoint

General AFT

category \mathcal{B} with small limits $U: \mathcal{B} \to \mathcal{A}$ preserves them Solution Set Condition

U has left adjoint

General AFT (Freyd)

category \mathcal{B} with small limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them SSC

 \boldsymbol{U} has left adjoint

Enriched AFT (Kelly)

 $\begin{array}{l} \mathcal{V}\text{-category }\mathcal{B} \text{ with small limits} \\ \mathcal{U}\colon \mathcal{B} \to \mathcal{A} \text{ preserves them} \\ \hline \textbf{SSC} \end{array}$

U has left adjoint

Weak AFT (Kainen)

category ${\mathcal B}$ with small products $U\colon {\mathcal B}\to {\mathcal A}$ preserves them SSC

U has weak left adjoint

General AFT (Freyd)

category \mathcal{B} with small limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them SSC

 \boldsymbol{U} has left adjoint

Enriched AFT (Kelly)

 $\begin{array}{l} \mathcal{V}\text{-category }\mathcal{B} \text{ with small limits} \\ U\colon \mathcal{B} \to \mathcal{A} \text{ preserves them} \\ \mathsf{SSC} \end{array}$

U has left adjoint

Weak AFT (Kainen)

category \mathcal{B} with small products $U \colon \mathcal{B} \to \mathcal{A}$ preserves them SSC

U has weak left adjoint

$$A \xrightarrow{\eta} UFA \qquad FA \\ f \xrightarrow{\downarrow} Uf' \qquad \downarrow \exists f' \\ UB \qquad B$$

General AFT (Freyd)

category \mathcal{B} with small limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them SSC

 \boldsymbol{U} has left adjoint

Weak AFT (Kainen)

category ${\mathcal B}$ with small products $U\colon {\mathcal B}\to {\mathcal A}$ preserves them SSC

U has weak left adjoint

$$A \xrightarrow{\eta} UFA \qquad FA \\ f \xrightarrow{\downarrow} Uf' \qquad \downarrow \exists f' \\ UB \qquad B$$

Enriched AFT (Kelly)

 $\begin{array}{l} \mathcal{V}\text{-category }\mathcal{B} \text{ with small limits} \\ \mathcal{U}\colon \mathcal{B} \to \mathcal{A} \text{ preserves them} \\ \text{SSC} \end{array}$

U has left adjoint

Very (!) General AFT

 $\begin{array}{l} \mathcal{V}\text{-category }\mathcal{B} \text{ with } \square \text{ limits} \\ U \colon \mathcal{B} \to \mathcal{A} \text{ preserves them} \\ \text{SSC} \end{array}$

U has 🗆 left adjoint

General AFT (Freyd)

category \mathcal{B} with small limits $U \colon \mathcal{B} \to \mathcal{A}$ preserves them SSC

 \boldsymbol{U} has left adjoint

Weak AFT (Kainen)

category ${\mathcal B}$ with small products $U\colon {\mathcal B}\to {\mathcal A}$ preserves them SSC

U has weak left adjoint

$$A \xrightarrow{\eta} UFA \qquad FA \\ f \xrightarrow{\downarrow} Uf' \qquad \downarrow \exists f' \\ UB \qquad B$$

Enriched AFT (Kelly)

 $\begin{array}{l} \mathcal{V}\text{-category }\mathcal{B} \text{ with small limits} \\ \mathcal{U}\colon \mathcal{B} \to \mathcal{A} \text{ preserves them} \\ \text{SSC} \end{array}$

U has left adjoint

Very (!) General AFT

 $\begin{array}{l} \mathcal{V}\text{-category } \mathcal{B} \text{ with } \Box \text{ limits} \\ \mathcal{U} \colon \mathcal{B} \to \mathcal{A} \text{ preserves them} \\ \text{SSC} \end{array}$

U has \Box left adjoint

Enriched weakness

$$A \xrightarrow{\eta} UFA \qquad FA \\ \downarrow Uf' \qquad \downarrow \exists f' \qquad \qquad \mathcal{B}(FA, B) \xrightarrow{\operatorname{surj.}} \mathcal{A}(A, UB)$$

• enriched categories have homs C(C, D) lying in V

- (Lack-Rosicky) "Enriched Weakness" uses class *E* of morphisms in *V* to play the role of surjections
- ▶ $\mathcal{V} =$ **Set**, $\mathcal{E} =$ {surjections} gives unenriched weakness
- ▶ *E* = {isomorphisms} gives "non-weak weakness"

Enriched weakness

$$A \xrightarrow{\eta} UFA \qquad FA \\ \downarrow Uf' \qquad \downarrow \exists f' \qquad \qquad \mathcal{B} \qquad \qquad \mathcal{B}(FA, B) \xrightarrow{\mathcal{E}-map} \mathcal{A}(A, UB)$$

• enriched categories have homs C(C, D) lying in V

- (Lack-Rosicky) "Enriched Weakness" uses class *E* of morphisms in *V* to play the role of surjections
- ▶ $\mathcal{V} =$ **Set**, $\mathcal{E} =$ {surjections} gives unenriched weakness
- ▶ E = {isomorphisms} gives "non-weak weakness"

Very (!) General AFT

 $\begin{array}{l} \mathcal{V}\text{-category}\ \mathcal{B}\ \text{with}\ \Box\ \text{limits}\\ U\colon \mathcal{B}\to \mathcal{A}\ \text{preserves them}\\ \text{SSC} \end{array}$

U has \mathcal{E} -weak left adjoint

Examples

 $\mathcal{B}(\mathit{F\!A}, \mathit{B}) \overset{\mathcal{E}}{\longrightarrow} \mathcal{A}(\mathit{A}, \mathit{U\!B})$

\mathcal{V}	ε	$\mathcal E$ -weak left adjoint
Set	isos	left adjoint
Set	surjections	weak left adjoint
\mathcal{V}	isos	(enriched) left adjoint
Cat	equivalences	left biadjoint

Examples

 $\mathcal{B}(\mathit{F\!A}, \mathit{B}) \xrightarrow{\mathcal{E}} \mathcal{A}(\mathit{A}, \mathit{U\!B})$

\mathcal{V}	ε	${\mathcal E}$ -weak left adjoint
Set	isos	left adjoint
Set	surjections	weak left adjoint
\mathcal{V}	isos	(enriched) left adjoint
Cat	equivalences	left biadjoint
Cat	surj equivalences	() left biadjoint

Examples

\mathcal{V}	ε	$\mathcal E$ -weak left adjoint
Set	isos	left adjoint
Set	surjections	weak left adjoint
\mathcal{V}	isos	(enriched) left adjoint

Cat	surj equivalences	()	left biadjoint
c Sot	dual strong deformation retracts		

sSet dual strong deformation retracts

Definition

A morphism $p: X \to Y$ of simplicial sets is dsdr if it is contractible in **sSet**/Y:

- it has a section s
- with a homotopy $s \circ p \sim 1_X$
- Such that induced homotopy $p \circ s \circ p \sim p$ is trivial.

Let \mathcal{V} be a monoidal model category with cofibrant unit I

. . .

Let \mathcal{V} be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences \mathcal{W} , trivial fibrations \mathcal{P} .

Let \mathcal{V} be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences \mathcal{W} , trivial fibrations \mathcal{P} . An *interval* in \mathcal{V} is a factorization

$$I + I \xrightarrow{i} J \xrightarrow{w} I$$

- A morphism $A \to B$ in a \mathcal{V} -category \mathcal{C} is a morphism $I \to \mathcal{C}(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to C(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is dsdr if there exist s with p ∘ s = 1, and homotopy s ∘ p ∼ 1 with p ∘ s ∘ p ∼ p trivial.

Let \mathcal{V} be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences \mathcal{W} , trivial fibrations \mathcal{P} . An *interval* in \mathcal{V} is a factorization

$$I + I \xrightarrow{i} J \xrightarrow{w} I$$

$$I \xrightarrow{f} \mathcal{C}(A,B)$$

- A morphism $A \to B$ in a \mathcal{V} -category \mathcal{C} is a morphism $I \to \mathcal{C}(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to C(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is dsdr if there exist s with p ∘ s = 1, and homotopy s ∘ p ∼ 1 with p ∘ s ∘ p ∼ p trivial.

Let \mathcal{V} be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences \mathcal{W} , trivial fibrations \mathcal{P} . An *interval* in \mathcal{V} is a factorization

- A morphism $A \to B$ in a \mathcal{V} -category \mathcal{C} is a morphism $I \to \mathcal{C}(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to C(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is dsdr if there exist s with p ∘ s = 1, and homotopy s ∘ p ∼ 1 with p ∘ s ∘ p ∼ p trivial.

Let \mathcal{V} be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences \mathcal{W} , trivial fibrations \mathcal{P} . An *interval* in \mathcal{V} is a factorization

- A morphism $A \to B$ in a \mathcal{V} -category \mathcal{C} is a morphism $I \to \mathcal{C}(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to C(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is dsdr if there exist s with p ∘ s = 1, and homotopy s ∘ p ∼ 1 with p ∘ s ∘ p ∼ p trivial.

Let \mathcal{V} be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences \mathcal{W} , trivial fibrations \mathcal{P} . An *interval* in \mathcal{V} is a factorization

- A morphism $A \to B$ in a \mathcal{V} -category \mathcal{C} is a morphism $I \to \mathcal{C}(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to C(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is dsdr if there exist s with p ∘ s = 1, and homotopy s ∘ p ∼ 1 with p ∘ s ∘ p ∼ p trivial.

Let \mathcal{V} be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences \mathcal{W} , trivial fibrations \mathcal{P} . An *interval* in \mathcal{V} is a factorization

- A morphism $A \to B$ in a \mathcal{V} -category \mathcal{C} is a morphism $I \to \mathcal{C}(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to C(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is dsdr if there exist s with p ∘ s = 1, and homotopy s ∘ p ∼ 1 with p ∘ s ∘ p ∼ p trivial.

Let \mathcal{V} be a monoidal model category with cofibrant unit I ... cofibrations \mathcal{I} , weak equivalences \mathcal{W} , trivial fibrations \mathcal{P} . An *interval* in \mathcal{V} is a factorization

- A morphism $A \to B$ in a \mathcal{V} -category \mathcal{C} is a morphism $I \to \mathcal{C}(A, B)$.
- A homotopy between morphisms $A \to B$ is a morphism $J \to C(A, B)$ (for some interval)
- A homotopy is trivial if it factorizes through w
- A morphism p is dsdr if there exist s with p ∘ s = 1, and homotopy s ∘ p ∼ 1 with p ∘ s ∘ p ∼ p trivial.

Examples (of \mathcal{V})

\mathcal{V}	\mathcal{I}	${\mathcal W}$	dsdr morphisms
Set	all	isos	isos
\mathcal{V}	all	isos	isos
Set	mono	all	surj
Cat	inj obj	equiv	surj equiv
sSet	mono	wk hty equiv	(Quillen) dsdr
sSet	mono	wk cat equiv	(Joyal) dsdr
2-Cat		biequivalences	surj, full biequivalences

Examples (of \mathcal{V})

\mathcal{V}	\mathcal{I}	${\mathcal W}$	dsdr morphisms
Set	all	isos	isos
\mathcal{V}	all	isos	isos
Set	mono	all	surj
Cat	inj obj	equiv	surj equiv
sSet	mono	wk hty equiv	(Quillen) dsdr
sSet	mono	wk cat equiv	(Joyal) dsdr
2-Cat		biequivalences	surj, full biequivalences

In general, for $f: X \to Y$ in \mathcal{V} :

- trivial fibration \Rightarrow dsdr (if X, Y cofibrant)
- ► dsdr ⇒ weak equivalence (if X fibrant or cofibrant)

Examples (of \mathcal{V})

\mathcal{V}	\mathcal{I}	${\mathcal W}$	dsdr morphisms
Set	all	isos	isos
\mathcal{V}	all	isos	isos
Set	mono	all	surj
Cat	inj obj	equiv	surj equiv
sSet	mono	wk hty equiv	(Quillen) dsdr
sSet	mono	wk cat equiv	(Joyal) dsdr
2-Cat		biequivalences	surj, full biequivalences

In general, for $f: X \to Y$ in \mathcal{V} :

- trivial fibration \Rightarrow dsdr (if X, Y cofibrant)
- dsdr ⇒ weak equivalence (if X fibrant or cofibrant)

Very (!) General AFT

 $\begin{array}{l} \mathcal{V}\text{-category } \mathcal{B} \text{ with } \Box \text{ limits} \\ \mathcal{U} \colon \mathcal{B} \to \mathcal{A} \text{ preserves them} \\ \mathsf{SSC} \end{array}$

U has "dsdr-weak" left adjoint

Limit of a functor $S: \mathcal{D} \to \mathcal{B}$ is defined by natural isos

 $\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$

Limit of \mathcal{V} -functor $S \colon \mathcal{D} \to \mathcal{B}$ weighted by $G \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $S \colon \mathcal{D} \to \mathcal{B}$ weighted by $G \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $S \colon \mathcal{D} \to \mathcal{B}$ weighted by $G \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B, A^{X}) \cong \mathcal{V}(X, \mathcal{B}(B, A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $S \colon \mathcal{D} \to \mathcal{B}$ weighted by $G \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \rightarrow \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $S \colon \mathcal{D} \to \mathcal{B}$ weighted by $G \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrantHHDif it is projective with respect to $\downarrow p$ $\downarrow pD \in \mathcal{P}$ the pointwise trivial fibrations:GK

Limit of a functor $S: \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $S: \mathcal{D} \to \mathcal{B}$ weighted by $G: \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

 $\begin{array}{ccc}
H & HD \\
\downarrow p & \downarrow pD \in \mathcal{P} \\
G \longrightarrow K & \nu p \\
\end{array}$ A V-category \mathcal{B} has enough cofibrant limits if for any weight G there is a cofibrant G' with a pointwise trivial fibration $G' \rightarrow G$ for which \mathcal{B} has G'-weighted limits.

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $S \colon \mathcal{D} \to \mathcal{B}$ weighted by $G \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations: $\begin{array}{ccc} H & HD \\ \exists \mathcal{P} & \int pD \in \mathcal{P} \\ G \xrightarrow{\sim} K & KD \end{array}$

Limit of a functor $S \colon \mathcal{D} \to \mathcal{B}$ is defined by natural isos

$$\mathcal{B}(B, \lim S) \cong [\mathcal{D}, \mathbf{Set}](\Delta 1, \mathcal{B}(B, S)).$$

Limit of \mathcal{V} -functor $S \colon \mathcal{D} \to \mathcal{B}$ weighted by $G \colon \mathcal{D} \to \mathcal{V}$ defined by

$$\mathcal{B}(B, \lim_{G} S) \cong [\mathcal{D}, \mathcal{V}](G, \mathcal{B}(B, S)).$$

The power of $A \in \mathcal{B}$ by $X \in \mathcal{V}$ defined by

$$\mathcal{B}(B,A^X)\cong\mathcal{V}(X,\mathcal{B}(B,A))$$

A weight $G: \mathcal{D} \to \mathcal{V}$ is cofibrant if it is projective with respect to the pointwise trivial fibrations:

The VGAFT

Let $\ensuremath{\mathcal{V}}$ be a monoidal model category with cofibrant unit.

V(ery) G(eneral) AFT

 $\mathcal V\text{-}\mathsf{category}\ \mathcal B$ with all powers and enough cofibrant limits $U\colon \mathcal B\to \mathcal A$ preserves them SSC

U has a dsdr-weak left adjoint

The VGAFT

Let $\ensuremath{\mathcal{V}}$ be a monoidal model category with cofibrant unit.

V(ery) G(eneral) AFT

 $\begin{array}{l} \mathcal{V}\text{-category}\ \mathcal{B}\ \text{with all powers and enough cofibrant limits}\\ \mathcal{U}\colon \mathcal{B}\to \mathcal{A}\ \text{preserves them}\\ \\ \begin{array}{l} \text{SSC} \end{array}$

U has a dsdr-weak left adjoint

N(ot) Q(uite) S(o) G(eneral) AFT

 $\begin{array}{l} \mathcal{V}\text{-category }\mathcal{B} \text{ with all powers and enough cofibrant limits} \\ \mathcal{U}\colon \mathcal{B} \to \mathcal{A} \text{ preserves them} \\ \mathcal{B}_0 \text{ and } \mathcal{A}_0 \text{ are accessible, } \mathcal{U}_0 \text{ accessible functor (unenriched)} \\ \mathcal{U} \text{ has a dsdr-weak left adjoint} \end{array}$

An ∞ -cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has dsdr-weak colimits.

A cosmological functor is an enriched functor between $\infty\mbox{-}cosmoi$ which preserves this structure.

Corollary

An ∞ -cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has dsdr-weak colimits.

A cosmological functor is an enriched functor between $\infty\mbox{-}cosmoi$ which preserves this structure.

Corollary

An ∞ -cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has dsdr-weak colimits.

A cosmological functor is an enriched functor between ∞ -cosmoi which preserves this structure.

Corollary

An ∞ -cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has dsdr-weak colimits.

A cosmological functor is an enriched functor between $\infty\mathchar`-cosmoi$ which preserves this structure.

Corollary

An ∞ -cosmos is a **sSet**-category with all powers, enough cofibrant limits, and certain further structure.

These are intended to be a model-independent framework in which to study the totality of $(\infty, 1)$ -categories and related structures.

Corollary

Any accessible ∞ -cosmos has dsdr-weak colimits.

A cosmological functor is an enriched functor between $\infty\mathchar`-cosmoi$ which preserves this structure.

Corollary