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Enriched weakness
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surj.

I enriched categories have homs C(C ,D) lying in V
I (Lack-Rosicky) “Enriched Weakness” uses class E of

morphisms in V to play the role of surjections

I V = Set, E = {surjections} gives unenriched weakness

I E = {isomorphisms} gives “non-weak weakness”

Very (!) General AFT
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U : B → A preserves them
SSC

U has E-weak left adjoint
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Examples

B(FA,B) A(A,UB)
E

V E E-weak left adjoint

Set isos left adjoint
Set surjections weak left adjoint
V isos (enriched) left adjoint
Cat equivalences left biadjoint

Cat surj equivalences (. . . ) left biadjoint
sSet dual strong deformation retracts

Definition

A morphism p : X → Y of simplicial sets is dsdr if it is contractible
in sSet/Y :

I it has a section s

I with a homotopy s ◦ p ∼ 1X
I such that induced homotopy p ◦ s ◦ p ∼ p is trivial.
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The setting
Let V be a monoidal model category with cofibrant unit I
. . .

cofibrations I, weak equivalences W, trivial fibrations P.
An interval in V is a factorization

I + I J I
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∇
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f C(A,B)
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g) h
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Y
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s

X
'
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1

of the codiagonal with i ∈ I and w ∈ W.

I A morphism A→ B in a V-category C is a morphism
I → C(A,B).

I A homotopy between morphisms A→ B is a morphism
J → C(A,B) (for some interval)

I A homotopy is trivial if it factorizes through w

I A morphism p is dsdr if there exist s with p ◦ s = 1, and
homotopy s ◦ p ∼ 1 with p ◦ s ◦ p ∼ p trivial.



The setting
Let V be a monoidal model category with cofibrant unit I
. . . cofibrations I, weak equivalences W, trivial fibrations P.

An interval in V is a factorization

I + I J I
i w

∇

C(A,B)I
f C(A,B)

(f

=

g) h

X

Y

p

Y
1

s

X
'

p

1

of the codiagonal with i ∈ I and w ∈ W.

I A morphism A→ B in a V-category C is a morphism
I → C(A,B).

I A homotopy between morphisms A→ B is a morphism
J → C(A,B) (for some interval)

I A homotopy is trivial if it factorizes through w

I A morphism p is dsdr if there exist s with p ◦ s = 1, and
homotopy s ◦ p ∼ 1 with p ◦ s ◦ p ∼ p trivial.



The setting
Let V be a monoidal model category with cofibrant unit I
. . . cofibrations I, weak equivalences W, trivial fibrations P.
An interval in V is a factorization

I + I J I
i w

∇

C(A,B)I
f C(A,B)

(f

=

g) h

X

Y

p

Y
1

s

X
'

p

1

of the codiagonal with i ∈ I and w ∈ W.

I A morphism A→ B in a V-category C is a morphism
I → C(A,B).

I A homotopy between morphisms A→ B is a morphism
J → C(A,B) (for some interval)

I A homotopy is trivial if it factorizes through w

I A morphism p is dsdr if there exist s with p ◦ s = 1, and
homotopy s ◦ p ∼ 1 with p ◦ s ◦ p ∼ p trivial.



The setting
Let V be a monoidal model category with cofibrant unit I
. . . cofibrations I, weak equivalences W, trivial fibrations P.
An interval in V is a factorization

I + I J I
i w

∇

C(A,B)I
f

C(A,B)

(f

=

g) h

X

Y

p

Y
1

s

X
'

p

1

of the codiagonal with i ∈ I and w ∈ W.

I A morphism A→ B in a V-category C is a morphism
I → C(A,B).

I A homotopy between morphisms A→ B is a morphism
J → C(A,B) (for some interval)

I A homotopy is trivial if it factorizes through w

I A morphism p is dsdr if there exist s with p ◦ s = 1, and
homotopy s ◦ p ∼ 1 with p ◦ s ◦ p ∼ p trivial.



The setting
Let V be a monoidal model category with cofibrant unit I
. . . cofibrations I, weak equivalences W, trivial fibrations P.
An interval in V is a factorization

I + I J I
i w

∇

C(A,B)

I
f

C(A,B)

(f

=

g) h

X

Y

p

Y
1

s

X
'

p

1

of the codiagonal with i ∈ I and w ∈ W.

I A morphism A→ B in a V-category C is a morphism
I → C(A,B).

I A homotopy between morphisms A→ B is a morphism
J → C(A,B) (for some interval)

I A homotopy is trivial if it factorizes through w

I A morphism p is dsdr if there exist s with p ◦ s = 1, and
homotopy s ◦ p ∼ 1 with p ◦ s ◦ p ∼ p trivial.



The setting
Let V be a monoidal model category with cofibrant unit I
. . . cofibrations I, weak equivalences W, trivial fibrations P.
An interval in V is a factorization

I + I J I
i w

∇

C(A,B)

I
f

C(A,B)

(f =g) h

X

Y

p

Y
1

s

X
'

p

1

of the codiagonal with i ∈ I and w ∈ W.

I A morphism A→ B in a V-category C is a morphism
I → C(A,B).

I A homotopy between morphisms A→ B is a morphism
J → C(A,B) (for some interval)

I A homotopy is trivial if it factorizes through w

I A morphism p is dsdr if there exist s with p ◦ s = 1, and
homotopy s ◦ p ∼ 1 with p ◦ s ◦ p ∼ p trivial.



The setting
Let V be a monoidal model category with cofibrant unit I
. . . cofibrations I, weak equivalences W, trivial fibrations P.
An interval in V is a factorization

I + I J I
i w

∇

C(A,B)

I
f

C(A,B)

(f

=

g) h

X

Y

p

Y
1

s

X
'

p

1

of the codiagonal with i ∈ I and w ∈ W.

I A morphism A→ B in a V-category C is a morphism
I → C(A,B).

I A homotopy between morphisms A→ B is a morphism
J → C(A,B) (for some interval)

I A homotopy is trivial if it factorizes through w

I A morphism p is dsdr if there exist s with p ◦ s = 1, and
homotopy s ◦ p ∼ 1 with p ◦ s ◦ p ∼ p trivial.



The setting
Let V be a monoidal model category with cofibrant unit I
. . . cofibrations I, weak equivalences W, trivial fibrations P.
An interval in V is a factorization

I + I J I
i w

∇

C(A,B)

I
f

C(A,B)

(f

=

g) h

X

Y

p

Y
1

s

X
'

p

1

of the codiagonal with i ∈ I and w ∈ W.

I A morphism A→ B in a V-category C is a morphism
I → C(A,B).

I A homotopy between morphisms A→ B is a morphism
J → C(A,B) (for some interval)

I A homotopy is trivial if it factorizes through w

I A morphism p is dsdr if there exist s with p ◦ s = 1, and
homotopy s ◦ p ∼ 1 with p ◦ s ◦ p ∼ p trivial.



The setting
Let V be a monoidal model category with cofibrant unit I
. . . cofibrations I, weak equivalences W, trivial fibrations P.
An interval in V is a factorization

I + I J I
i w

∇

C(A,B)

I
f

C(A,B)

(f

=

g) h

X

Y

p

Y
1

s

X
'

p

1

of the codiagonal with i ∈ I and w ∈ W.

I A morphism A→ B in a V-category C is a morphism
I → C(A,B).

I A homotopy between morphisms A→ B is a morphism
J → C(A,B) (for some interval)

I A homotopy is trivial if it factorizes through w

I A morphism p is dsdr if there exist s with p ◦ s = 1, and
homotopy s ◦ p ∼ 1 with p ◦ s ◦ p ∼ p trivial.



Examples (of V)

V I W dsdr morphisms

Set all isos isos
V all isos isos
Set mono all surj
Cat inj obj equiv surj equiv
sSet mono wk hty equiv (Quillen) dsdr
sSet mono wk cat equiv (Joyal) dsdr
2-Cat biequivalences surj, full biequivalences

In general, for f : X → Y in V:

I trivial fibration ⇒ dsdr
( if X ,Y cofibrant )

I dsdr ⇒ weak equivalence
(if X fibrant or cofibrant)

Very (!) General AFT

V-category B with � limits
U : B → A preserves them
SSC

U has“dsdr-weak” left adjoint
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The limits in question
Limit of a functor S : D → B is defined by natural isos

B(B, lim S) ∼= [D,Set](∆1,B(B,S)).

Limit of V-functor S : D → B weighted by G : D → V defined by

B(B, lim
G

S) ∼= [D,V](G ,B(B, S)).

The power of A ∈ B by X ∈ V defined by

B(B,AX ) ∼= V(X ,B(B,A))

A weight G : D → V is cofibrant
if it is projective with respect to
the pointwise trivial fibrations:

G K

H

KD

HD

p pD ∈ P

∃

A V-category B has enough cofibrant limits if for any weight G
there is a cofibrant G ′ with a pointwise trivial fibration G ′ → G for
which B has G ′-weighted limits.
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V(ery) G(eneral) AFT
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U : B → A preserves them
SSC

U has a dsdr-weak left adjoint

N(ot) Q(uite) S(o) G(eneral) AFT

V-category B with all powers and enough cofibrant limits
U : B → A preserves them
B0 and A0 are accessible, U0 accessible functor (unenriched)

U has a dsdr-weak left adjoint
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Application (to Riehl-Verity ∞-cosmoi)

An ∞-cosmos is a sSet-category with all powers, enough cofibrant
limits, and certain further structure.

These are intended to be a model-independent framework in which
to study the totality of (∞, 1)-categories and related structures.

Corollary

Any accessible ∞-cosmos has dsdr-weak colimits.

A cosmological functor is an enriched functor between ∞-cosmoi
which preserves this structure.

Corollary

Any cosomological functor satisfying the SSC has a dsdr-weak left
adjoint.
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