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n
A— UFA FA surj.
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» enriched categories have homs C(C, D) lying in V

» (Lack-Rosicky) “Enriched Weakness" uses class £ of
morphisms in V to play the role of surjections

» )V = Set, £ = {surjections} gives unenriched weakness
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sSet  dual strong deformation retracts

Definition
A morphism p: X — Y of simplicial sets is dsdr if it is contractible
in sSet/Y:

> it has a section s

» with a homotopy sop ~ 1x

» such that induced homotopy poso p ~ p is trivial.
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» A morphism p is dsdr if there exist s with pos =1, and
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Set all isos isos

V all iSos isos

Set mono  all surj

Cat inj obj equiv surj equiv

sSet mono  wk hty equiv  (Quillen) dsdr
sSet mono wk cat equiv  (Joyal) dsdr
2-Cat biequivalences surj, full biequivalences

In general, for f: X — Y in V: Very (|) General AFT

» trivial fibration = dsdr Vicaiameny 18 wieh O [fmis

(if X, Y cofibrant ) U: B — A preserves them
» dsdr = weak equivalence SSC

(if X fibrant or cofibrant) U has“dsdr-weak” left adjoint



The limits in question
Limit of a functor S: D — B is defined by natural isos

B(B,limS) = [D, Set|(Al, B(B, S)).
Limit of V-functor S: D — B weighted by G: D — V defined by
B(B, Ii(r;n S) = [D,V|(G,B(B,S)).
The power of A € B by X € V defined by

B(B, A%) = V(X, B(B, A))

A weight G: D — V is cofibrant
if it is projective with respect to
the pointwise trivial fibrations:
A V-category B has enough cofibrant limits if for any weight G

there is a cofibrant G’ with a pointwise trivial fibration G’ — G for
which B has G’-weighted limits.
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N(ot) Q(uite) S(o) G(eneral) AFT

V-category B with all powers and enough cofibrant limits
U: B — A preserves them

By and Ap are accessible, Uy accessible functor (unenriched)
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Application (to Riehl-Verity co-cosmoi)

An oco-cosmos is a sSet-category with all powers, enough cofibrant
limits, and certain further structure.

These are intended to be a model-independent framework in which
to study the totality of (oo, 1)-categories and related structures.
Corollary

Any accessible co-cosmos has dsdr-weak colimits.

A cosmological functor is an enriched functor between co-cosmoi
which preserves this structure.

Corollary

Any cosomological functor satisfying the SSC has a dsdr-weak left
adjoint.
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