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Theories

Theories in Logic

A theory is given by a list of axioms on a fixed set of operations;
its models are corresponding sets and functions that satisfy those
axioms.

Examples

1 Algebraic Theories: axioms consist of equations based on the
operation symbols of the language;

2 Essentially Algebraic Theories: axioms are still equations but
the operation symbols are not defined globally, but only on
equationally defined subsets;

3 Regular Theories: we allow existential quantification over the
usual equations.
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Theories

Theories in Category Theory

Categorically speaking, we could think of a theory as a category C
with some structure, and of a model of C as a functor F : C → Set
which preserves that structure.

Examples

1 Algebraic Theories: categories with finite products; their
models are finite product preserving functors [Lawvere,63].

2 Essentially Algebraic Theories: categories with finite limits; lex
functors are its models [Freyd,72].

3 Regular Theories: regular categories; their models are regular
functors [Makkai-Reyes,77].
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Theories

Gabriel-Ulmer Duality

• The two notions of theory, categorical and logical, can be
recovered from each other: given a logical theory, produce a
category with the relevant structure for which models of the
theory correspond to functors to Set preserving this structure,
and vice versa.

For essentially algebraic theories there is a duality between theories
and their models:

Theorem (Gabriel-Ulmer)

The following is a biequivalence of 2-categories:

Lfp(−,Set) : Lfp Lexop : Lex(−,Set).
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Regular Theories

Regular and Exact Categories

Regular Categories: finitely complete ones with coequalizers of
kernel pairs, for which regular epimorphisms are pullback stable.

Theorem (Barr’s Embedding)

Let C be a small regular category; then the evaluation functor
ev : C → [Reg(C,Set),Set] is fully faithful and regular.

Exact Categories: regular ones with effective equivalence relations.

Theorem (Makkai’s Image Theorem)

Let C be a small exact category. The essential image of the
embedding ev : C → [Reg(C,Set),Set] is given by those functors
which preserve filtered colimits and small products.
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Regular Theories

Duality for Exact Categories

• On one side of the duality there is the 2-category Ex of exact
categories, regular functors, and natural transformations.

• On the other side is a 2-category Def whose objects are called
definable categories and correspond to models of regular
theories.

Theorem (Prest-Rajani/Kuber-Rosický)

The following is a biequivalence of 2-categories:

Def(−,Set) : Def Exop : Reg(−,Set)
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Enriched Finite Limit Theories

Base for Enrichment

Let V = (V0, I ,⊗) be a symmetric monoidal closed category.

Recall: An object A of V0 is called finitely presentable if the
hom-functor V0(A,−) : V0 → Set preserves filtered colimits;
denote by (V0)f the full subcategory of finitely presentable objects.

Definition (Kelly)

We say that V = (V0, I ,⊗) is a locally finitely presentable as a
closed category if:

1 V0 is cocomplete with strong generator G ⊆ (V0)f (i.e. is
locally finitely presentable) ;

2 I ∈ (V0)f ;

3 if A,B ∈ G then A⊗ B ∈ (V0)f .
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Enriched Finite Limit Theories

Duality

• An object A of L is called finitely presentable if the
hom-functor L(A,−) : L → V preserves conical filtered
colimits;

• Locally finitely presentable V-category: V-cocomplete with a
small strong generator consisting of finitely presentable
objects;

• Finitely complete V-category: one with finite conical limits
and finite powers.

Theorem (Kelly)

The following is a biequivalence of 2-categories:

(−)opf : V-Lfp V-Lexop : Lex(−,V)
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Enriched Regular Theories

Base for Enrichment

Let V = (V0, I ,⊗) be a symmetric monoidal closed category.

Recall: An object A of V0 is called (regular) projective if the
hom-functor V0(A,−) : V0 → Set preserves regular epimorphisms;
denote by (V0)pf the full subcategory of finite projective objects.

Definition

Let V = (V0,⊗, I ) be a symmetric monoidal closed category. We
say that V is a symmetric monoidal finitary quasivariety if:

1 V0 is cocomplete with strong generator P ⊆ (V0)pf (i.e. is a
finitary quasivariety);

2 I ∈ (V0)f ;

3 if P,Q ∈ P then P ⊗ Q ∈ (V0)pf .

We call it a symmetric monoidal finitary variety if V0 is also a
finitary variety (i.e. an exact finitary quasivariety).
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Enriched Regular Theories

Base for Enrichment

Examples

1 Set, Ab, R-Mod and GR-R-Mod, for each commutative ring
R, with the usual tensor product;

2 [Cop,Set], for any category C with finite products, equipped
with the cartesian product;

3 pointed sets Set∗ with the smash product;

4 G -sets SetG for a finite group G with the cartesian product;

5 directed graphs Gra with the cartesian product;

6 Ch(A) for each abelian and symmetric monoidal finitary
quasivariety A, with the tensor product inherited from A;

7 torsion free abelian groups Abtf with the usual tensor product;

8 binary relations BRel with the cartesian product;
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Enriched Regular Theories

Regular V-categories

Definition

A V-category C is called regular if:

• it has all finite weighted limits and coequalizers of kernel pairs;

• regular epimorphisms are stable under pullback and closed
under powers by elements of P ⊆ (V0)pf .

F : C → D between regular V-categories is called regular if it
preserves finite weighted limits and regular epimorphisms.

• V itself is regular as a V-category;

• if C is regular as a V-category then C0 is a regular category;

Theorem (Barr’s Embedding)

Let C be a small regular V-category; then the evaluation functor
evC : C → [Reg(C,V),V] is fully faithful and regular.
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Enriched Regular Theories

Exact V-categories

Definition

A V-category B is called exact if it is regular and in addition the
ordinary category B0 is exact in the usual sense.

• Taking V = Set or V = Ab this notion coincides with the
ordinary one of exact or abelian category.

• If V is a symmetric monoidal finitary variety, V is exact as a
V-category.

Theorem (Makkai’s Image Theorem)

For any small exact V-category B; the essential image of
evB : B −→ [Reg(B,V),V] is given by those functors which
preserve small products, filtered colimits and projective powers.
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Enriched Regular Theories

Definable V-categories

Definition
• Given an arrow h : A→ B in a V-category L, an object L ∈ L

is said to be h-injective if L(h, L) : L(B, L)→ L(A, L) is a
regular epimorphism in V.

• Given a small set M of arrows from L, write M-inj for the
full subcategory of L consisting of h-injective for each h ∈M.

• If L is locally finitely presentable and the arrows in M have
finitely presentable domain and codomain, we call M-inj an
enriched finite injectivity class.

Proposition

Each finite injectivity class D of a locally finitely presentable
V-category L is closed under (small) products, projective powers,
filtered colimits, and pure subobjects.
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Enriched Regular Theories

Definable V-categories

Definition
• A V-category D is called definable if it is an enriched finite

injectivity class of some locally finitely presentable V-category.

• A definable functor between definable V-categories is a
V-functor that preserves products, projective powers, and
filtered colimits.

• Each locally finitely presentable V-category is definable;

• For any small regular V-category C, the V-category Reg(C,V)
is definable. Indeed, Reg(C,V) =M-inj in Lex(C,V), where

M := {C(h,−) | h regular epimorphism in C}.
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Enriched Regular Theories

Duality for Enriched Exact Categories

Assume V to be a symmetric monoidal finitary variety, then

• every definable V-category D is equivalent Reg(B,V) for a
small exact V-category B;

• for each definable D, the V-category Def(D,V) is small and
exact.

This and Makkai’s Image Theorem imply:

Theorem

Let V be a symmetric monoidal finitary variety. Then the
2-adjunction

Def(−,V) : V-Def V-Exop : Reg(−,V)

is a biequivalence.

16 of 18



Enriched Regular Theories

Duality for Enriched Exact Categories

Assume V to be a symmetric monoidal finitary variety, then

• every definable V-category D is equivalent Reg(B,V) for a
small exact V-category B;

• for each definable D, the V-category Def(D,V) is small and
exact.

This and Makkai’s Image Theorem imply:

Theorem

Let V be a symmetric monoidal finitary variety. Then the
2-adjunction

Def(−,V) : V-Def V-Exop : Reg(−,V)

is a biequivalence.

16 of 18



Enriched Regular Theories

Free Exact V-categories

Proposition

Let C be a small finitely complete V-category; then for each small
exact V-category B, ev : C → Cex/lex := Def(Lex(C,V),V) induces
an equivalence:

Reg(Cex/lex ,B) ' Lex(C,B).

and

Proposition

Let C be a small regular V-category. Then for each small exact
V-category B, ev : C → Cex/reg := Def(Reg(C,V),V) induces an
equivalence:

Reg(Cex/reg ,B) ' Reg(C,B).
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Enriched Regular Theories

Thank You
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