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Locally presentable categories and accessible categories.
Two dimensional universal algebra.

3. A general approach to accessibility of weak/cofibrant
categorical structures.

4. Quasicategories and related structures (w’' Lack/Vok#inek).
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Locally presentable and accessible categories

» C is A-accessible if it has a set of \-presentable objects of
which every object is a A-filtered colimit. Accessible if
A-accessible for some \. (Book of Makkai-Pare 1989)
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Locally presentable and accessible categories

C is A-accessible if it has a set of \-presentable objects of
which every object is a A-filtered colimit. Accessible if
A-accessible for some \. (Book of Makkai-Pare 1989)

» Locally presentable = accessible + complete/cocomplete.
(GU 1971)

» Capture “algebraic” categories.

v

» Very nice: easy to construct adjoint functors between as
solution set condition easy to verify. Stable under lots of limit
constructions.

> Interested in the world in between accessible and locally
presentable! E.g. weakly locally A-presentable: A-accessible
and products/weak colimits. (AR1990s)
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Two dimensional universal algebra — Sydney 1980s

» Two-dimensional universal algebra: e.g. 2-category MonCat,
of monoidal categories and strong monoidal functors:
f(a®b) = fa® fb and f(i) = i.
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» Two-dimensional universal algebra: e.g. 2-category MonCat,
of monoidal categories and strong monoidal functors:
f(a® b) = fa® fb and f(i) = i. Also SMonCat,,Lex, Reg.
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» Not all limits (e.g. equalisers/pullbacks) so not locally
presentable.
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Two dimensional universal algebra — Sydney 1980s

Two-dimensional universal algebra: e.g. 2-category MonCat,
of monoidal categories and strong monoidal functors:

f(a® b) = fa® fb and f(i) = i. Also SMonCat,,Lex, Reg.
What properties do such 2-categories of pseudomaps have?

Not all limits (e.g. equalisers/pullbacks) so not locally
presentable.

BKP89: pie limits — those nice 2-d limits like products,
comma objects, pseudolimits whose defining cone does not
impose any equations between arrows.

BKPS89: 2-categories of weak structures (e.g. algebras for a
flexible — a.k.a cofibrant — 2-monad) also admit splittings of
idempotents (in summary, flexible/cofibrant weighted limits).

Today, we'll see such 2-cats are moreover accessible.
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Makkai and generalised sketches 1

» After Phd in Sydney, was postdoc in Brno where Makkai was.

» Makkai interested in developing theory of locally presentable
2-categories/bicategories involving filtered bicolimits etc.

» Some years later, | read his paper “Generalised sketches ..."
in which he described structures defined by universal
properties and their pseudomaps as cats of injectives — it
follows such categories of weak maps are genuinely accessible!

» Lack and Rosicky also observed cat NHom of bicategories and
normal pseudofunctors is accessible, by identifying bicategories
with their 2-nerves — certain injectives. [LR2012]

» Visited Makkai in Budapest 2015 and chatted about all of
this.

> Will describe general approach to accessibility of weak objects
and weak maps. Some parts worked out by Makkai and some
by me.
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Makkai's generalised sketches 2 — terminal objects

» Consider cat Sk of 3-truncated simplicial sets X equipped
with set X7 C X][0] of marked 0-simplices, and simplicial
maps preserving these. The cat Sk is |.p.
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Makkai's generalised sketches 2 — terminal objects

» Consider cat Sk of 3-truncated simplicial sets X equipped
with set X7 C X][0] of marked 0-simplices, and simplicial
maps preserving these. The cat Sk is |.p.

> Will describe cat TOb, of small cats with terminal object and
pseudomaps as injectivity class in category Sk.

» Fully faithful functor TOb, — Sk sending C to truncated
nerve C with Ct the set of all terminal objects.

(1) Add in inner horns (and codiagonals) with trivial markings to
capture categories with a distinguished set of objects as
injectives in Sk.

(2) Non-emptiness of X1: @ — {e}

(3) Objects in X7 are terminal 1: {0 1} — {0 — 1}

(4) Objects in X7 are terminal 2: {0 = 1} — {0 — 1}

(5) Repleteness of X7: {0 =1} — {0 =1}
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Makkai's generalised sketches 2 — terminal objects

» Consider cat Sk of 3-truncated simplicial sets X equipped
with set X7 C X][0] of marked 0-simplices, and simplicial
maps preserving these. The cat Sk is |.p.

> Will describe cat TOb, of small cats with terminal object and
pseudomaps as injectivity class in category Sk.

» Fully faithful functor TOb, — Sk sending C to truncated
nerve C with Ct the set of all terminal objects.

(1) Add in inner horns (and codiagonals) with trivial markings to
capture categories with a distinguished set of objects as
injectives in Sk.

(2) Non-emptiness of X1: @ — {e}

(3) Objects in X7 are terminal 1: {0 1} — {0 — 1}

(4) Objects in X7 are terminal 2: {0 = 1} — {0 — 1}

(5) Repleteness of X7: {0 =1} — {0 =1}

» Then X7 is set of all terminal objects, so TOb, — Sk is the

full subcat of injectives, so accessible.
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A locally small 2-category C belongs to K if:

» C has flexible limits;
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» finite flexible limits (those generated by finite products,

inserters and equifiers and splittings of idempotents) commute
with filtered colimits in C.
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Properties of 2-categories of weak objects and pseudomaps

A locally small 2-category C belongs to K if:
» C has flexible limits;
> its underlying category is accessible with filtered colimits;

» finite flexible limits (those generated by finite products,
inserters and equifiers and splittings of idempotents) commute
with filtered colimits in C.

Morphisms of K are 2-functors preserving flexible limits and filtered
colimits; 2-cells are 2-natural transformations.

» For C € K we say that C € KT if the full subcategory
RE(C) — Arr(C) of retract equivalences in C is accessible and
accessibly embedded in the arrow category of C.
Proposition
K™ is closed in 2-Cat under bilimits — in particular, pullbacks of

isofibrations.
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> Let J={jj:0D; — D; : i =0,1,2,3} be the generating
cofibrations in 2-Cat.
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Cellular 2-categories

Let J={ji:9D; — D; : i =0,1,2,3} be the generating
cofibrations in 2-Cat.

v

> 0Dy — Do: @ — (e).

» 6D — Di: (0 1) -»— (0 —1).
/‘\ /\

> 302 = Dt (9 ) — 01 1
~ 7 N~ 7
/"‘\ /“‘\

D= D (0" § ) 1) — (0§ 1)
~_ 7 N~ 7
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Let Ps(A,C) denote the 2-category of 2-functors and
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The core result

Let Ps(A,C) denote the 2-category of 2-functors and
pseudonatural transformations.

Theorem

Let C € K*. Then Ps(D;,C) — Ps(6D;,C) € K+ fori =0,1,2,3
and each such 2-category has flexible limits and filtered colimits
pointwise.

Proof.
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The core result

Let Ps(A,C) denote the 2-category of 2-functors and
pseudonatural transformations.

Theorem

Let C € K*. Then Ps(D;,C) — Ps(6D;,C) € K+ fori =0,1,2,3
and each such 2-category has flexible limits and filtered colimits
pointwise.

Proof.

Tricky bit to prove that Ps(Dj,C) is accessible — i.e. the cat of
pseudocommutative squares.

Taking the pseudolimit of f : A — B in C gives span A <~ Pr — B,
and pseudocommuting squares correspond to strict maps of the
associated spans.

A span A <+ R — B is of this form iff R — A is a retract
equivalence and R — A x B is a discrete isofibration.

Using accessibility of these notions, we deduce result. O
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Examples — monoidal cats

» Goal: construction MonCat,, as cocellular object — iterated
pullbacks of the maps Ps(D;, Cat) — Ps(dD;, Cat).
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Examples — monoidal cats

» Goal: construction MonCat,, as cocellular object — iterated
pullbacks of the maps Ps(D;, Cat) — Ps(dD;, Cat).

» For magma structure form pullback in 2-Cat:

f2
T-Algy —— > Ps(Dy,Cat) X2 ———>y?

iUl lPs(jl,Cat) mxl "ﬁ'? lmy

Cat — > Ps(sD; Cat
co(cr0) ebuea) X——F—>Y

John Bourke Accessible aspects of 2-category theory



Examples — monoidal cats

» Goal: construction MonCat,, as cocellular object — iterated
pullbacks of the maps Ps(D;, Cat) — Ps(dD;, Cat).

» For magma structure form pullback in 2-Cat:
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> Pseudomorphisms as above right.
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» For magma structure form pullback in 2-Cat:
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» Right leg isofibration in K*. Bottom leg preserves limits and
filtered colimits, and so belongs to K.
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Examples — monoidal cats

» Goal: construction MonCat,, as cocellular object — iterated
pullbacks of the maps Ps(D;, Cat) — Ps(dD;, Cat).

» For magma structure form pullback in 2-Cat:

f2
T-Algy —— > Ps(Dy,Cat) X2 ———>y?

iUl lPs(jl,Cat) mxl "ﬁ'? lmy

Cat — > Ps(sD; Cat
co(cr0) ebuea) X——F—>Y

> Pseudomorphisms as above right.

» Right leg isofibration in K*. Bottom leg preserves limits and
filtered colimits, and so belongs to K™.K™ closed in 2-Cat
under pullbacks of isofibrations — hence T-Alg; — Cat € K*.
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Monoidal cats 2

» Add associators by forming a pullback

mx1
T-Alg, Ps(D,,Cat) X3 ——— x2
i iPs(Kl,Cat) lxmi & im
R
T-Alg, Ps(8Dy,Cat) X ——F—X?

Here R sends (C, m) to the two paths from C3 to C as on the
right above.
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boundary of the free invertible 2-cell — thus an associator is
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obtained in the pullback. Arguing as before, T-Alg, € K™.

John Bourke Accessible aspects of 2-category theory



Monoidal cats 2

» Add associators by forming a pullback

mx1
T-Alg, Ps(D,,Cat) X3 ——— x2
i iPs(Kl,Cat) lxmi & im
R
T-Alg, Ps(8Dy,Cat) X ——F—X?

Here R sends (C, m) to the two paths from C3 to C as on the
right above. Now Ki : P, — I, is the inclusion of the
boundary of the free invertible 2-cell — thus an associator is
obtained in the pullback. Arguing as before, T-Alg, € K™.

» Add pentagon equation and so on by considering §D3 — D».
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Monoidal cats 2

» Add associators by forming a pullback

mx1
T-Alg, Ps(D,,Cat) X3 ——— x2
i iPs(Kl,Cat) lxmi & im
R
T-Alg, Ps(8Dy,Cat) X ——F—X?

Here R sends (C, m) to the two paths from C3 to C as on the
right above. Now Ki : P, — I, is the inclusion of the
boundary of the free invertible 2-cell — thus an associator is
obtained in the pullback. Arguing as before, T-Alg, € K™.

» Add pentagon equation and so on by considering §D3 — D».
» Conclude that MonCat, belongs to K+.
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More examples and results using cocellularity

» Likewise symmetric monoidal categories, finitely complete
categories, regular categories, exact categories, bicategories
...and their respective pseudomorphisms can be constructed
as co-cellular objects in K, and so belong to K.
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» Or internal versions of these ...
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More examples and results using cocellularity

» Likewise symmetric monoidal categories, finitely complete
categories, regular categories, exact categories, bicategories
...and their respective pseudomorphisms can be constructed
as co-cellular objects in K, and so belong to K.

» Or internal versions of these ...
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» Arguing in a similar fashion, if T is a finitary 2-monad on
C € K* then the 2-categories Lax-T-Alg,,, Ps-T-Alg, and
Colax-T-Alg, belongs to K*.

» If T, as above, has the property that each pseudoalgebra is
isomorphic to a strict T-algebra (e.g. if T is
flexible/cofibrant) then T-Alg, belongs to K* — this includes
a broad class of examples, including many of the above.
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More examples and results using cocellularity

» Likewise symmetric monoidal categories, finitely complete
categories, regular categories, exact categories, bicategories
...and their respective pseudomorphisms can be constructed
as co-cellular objects in K, and so belong to K.

» Or internal versions of these ...

» Arguing in a similar fashion, if T is a finitary 2-monad on
C € K* then the 2-categories Lax-T-Alg,,, Ps-T-Alg, and
Colax-T-Alg, belongs to K*.

» If T, as above, has the property that each pseudoalgebra is
isomorphic to a strict T-algebra (e.g. if T is
flexible/cofibrant) then T-Alg, belongs to K* — this includes
a broad class of examples, including many of the above.

» Also more general results for finite limit 2-theories. ...
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Quasicategories with limits etc

» Moral of the story: weak objects and weak maps form
accessible categories.
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preserving terminal objects is accessible. Proof uses first
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extend this to other quasicategorical structures.
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extend this to other quasicategorical structures. Would like a
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Quasicategories with limits etc

» Moral of the story: weak objects and weak maps form
accessible categories.

» So if we consider only weak structures (as in weak higher
category theory) most stuff should be accessible!

» Ongoing (w. Lack-Vok¥inek): extend some of these results
from 2-categories to co-cosmoi (Riehl-Verity), which are
certain simplicial categories admitting flexible limits.

» Qur first results: we have shown that QCat;, the infinity
cosmos of quasicategories with a terminal object and functors
preserving terminal objects is accessible. Proof uses first
approach in spirit of Makkai's generalised sketches. Plan to
extend this to other quasicategorical structures. Would like a
proof internal to oo cosmos too.

» Open problem: understand accessiblity of weak objects and
weak maps in more contexts. E.g. when is the Kleisli category
for a comonad accessible?
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Final thoughts!

» Paper “Accessible aspects of 2-category theory” in the coming
months, if you are interested.
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Final thoughts!

» Paper “Accessible aspects of 2-category theory” in the coming
months, if you are interested.

» Thanks for listening!
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