

A SOLUTION FOR THE COMPOSITIONALITY PROBLEM OF DINATURAL TRANSFORMATIONS

Guy McCusker, Alessio Santamaria

12th July 2019

CATEGORY THEORY 2019 Edinburgh, 7-13th July 2019

Dinatural transformations

 $F,G:\mathbb{C}^{\mathrm{op}}\times\mathbb{C}\to\mathbb{D}.$ A dinatural transformation $\varphi\colon F\to G$ is a family of morphisms in \mathbb{D}

$$\varphi = (\varphi_A \colon F(A,A) \to G(A,A))_{A \in \mathbb{C}}$$

Dinatural transformations

 $F,G\colon\mathbb{C}^{\mathrm{op}}\times\mathbb{C}\to\mathbb{D}.$ A dinatural transformation $\varphi\colon F\to G$ is a family of morphisms in \mathbb{D}

$$\varphi = (\varphi_A \colon F(A,A) \to G(A,A))_{A \in \mathbb{C}}$$

such that for all $f: A \to B$ in $\mathbb C$ the following commutes:

...don't compose

 $\varphi \colon F \to G, \ \psi \colon G \to H \ \text{dinatural}$

An extraordinary transformation

 $\ensuremath{\mathbb{C}}$ cartesian closed category.

$$eval_{A,B}: A \times (A \Rightarrow B) \rightarrow B$$

An extraordinary transformation

 $\ensuremath{\mathbb{C}}$ cartesian closed category.

$$eval_{A,B} : A \times (A \Rightarrow B) \rightarrow B$$

eval is natural in B and for all $f: A \rightarrow A'$ the following commutes:

$$A \times (A' \Rightarrow B) \xrightarrow{1 \times (f \Rightarrow 1)} A \times (A \Rightarrow B)$$

$$f \times (1 \Rightarrow 1) \downarrow \qquad \qquad \downarrow eval_{A,B}$$

$$A' \times (A' \Rightarrow B) \xrightarrow{eval_{A',B}} B$$

since for all $a \in A$ and $g: A' \to B$ $(g \circ f)(a) = g(f(a))$.

Extranatural transformations (Eilenberg, Kelly 1966)

 $F: \mathbb{A} \times \mathbb{B}^{op} \times \mathbb{B} \to \mathbb{E}$, $G: \mathbb{A} \times \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{E}$. An *extranatural* transformation $\varphi: F \to G$ is a family of morphisms in \mathbb{E}

$$\varphi = (\varphi_{A,B,C} \colon F(A,B,B) \to G(A,C,C))_{A \in \mathbb{A},B \in \mathbb{B},C \in \mathbb{C}}$$

Extranatural transformations (Eilenberg, Kelly 1966)

 $F: \mathbb{A} \times \mathbb{B}^{op} \times \mathbb{B} \to \mathbb{E}$, $G: \mathbb{A} \times \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{E}$. An extranatural transformation $\varphi: F \to G$ is a family of morphisms in \mathbb{E}

$$\varphi = (\varphi_{A,B,C} \colon F(A,B,B) \to G(A,C,C))_{A \in \mathbb{A},B \in \mathbb{B},C \in \mathbb{C}}$$

such that for all $f: A \underset{\mathbb{A}}{\rightarrow} A'$, $g: B \underset{\mathbb{B}}{\rightarrow} B'$, $h: C \underset{\mathbb{C}}{\rightarrow} C'$

$$F(A, B, B) \xrightarrow{\varphi_{A,B,C}} G(A, C, C) \qquad F(A, B', B) \xrightarrow{F(1,g,1)} F(A, B, B)$$

$$F(f,1,1) \downarrow \qquad \qquad \downarrow G(f,1,1) \qquad \qquad \downarrow \varphi_{A,B,C}$$

$$F(A', B, B) \xrightarrow{\varphi_{A',B,C}} G(A', C, C) \qquad F(A, B', B') \xrightarrow{\varphi_{A,B',C}} G(A, C, C)$$

$$F(A, B, B) \xrightarrow{\varphi_{A,B,C}} G(A, C, C)$$

$$\varphi_{A,B,C'} \downarrow \qquad \qquad \downarrow_{G(1,1,h)}$$

$$G(A, C', C') \xrightarrow{G(1,h,1)} G(A, C, C')$$

Extranaturals don't compose already

$$F: \mathbb{A} \times \mathbb{B}^{op} \times \mathbb{B} \to \mathbb{E}, G: \mathbb{A} \times \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{E}, H: \mathbb{A} \times \mathbb{D}^{op} \times \mathbb{D} \to \mathbb{E}.$$

 $\varphi: F \to G, \psi: G \to H$ extranatural transformations.

$$\psi \circ \varphi = \left(F(A, B, B) \xrightarrow{\varphi_{A,B,C}} G(A, C, C) \xrightarrow{\psi_{A,C,D}} H(A, D, D) \right)_{A,B,C,D}$$

is not a well-defined extranatural transformation from F to H.

$$F: \mathbb{A} \times \mathbb{B}^{op} \times \mathbb{B} \to \mathbb{E}, \ G: \mathbb{A} \times \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{E}$$

$$\varphi = (\varphi_{A,B,C} \colon F(A,B,B) \to G(A,C,C))_{A,B,C} \iff$$

$$F: \mathbb{A} \times \mathbb{B}^{op} \times \mathbb{B} \to \mathbb{E}, G: \mathbb{A} \times \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{E}$$

$$\varphi = (\varphi_{A,B,C} \colon F(A,B,B) \to G(A,C,C))_{A,B,C} \Leftrightarrow$$

$$G(\square,\square)$$

$$F: \mathbb{A} \times \mathbb{B}^{op} \times \mathbb{B} \to \mathbb{E}, G: \mathbb{A} \times \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{E}$$

$$\varphi = (\varphi_{A,B,C} : F(A,B,B) \to G(A,C,C))_{A,B,C} \iff A \blacksquare \qquad B \blacksquare \qquad C \blacksquare$$

$$G(\square,\square)$$

$$F: \mathbb{A} \times \mathbb{B}^{\mathsf{op}} \times \mathbb{B} \to \mathbb{E}, G: \mathbb{A} \times \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{E}$$

$$\varphi = (\varphi_{A,B,C} \colon F(A,B,B) \to G(A,C,C))_{A,B,C} \longleftrightarrow$$

$$F \colon \mathbb{A} \times \mathbb{B}^{\mathsf{op}} \times \mathbb{B} \to \mathbb{E}, \ G \colon \mathbb{A} \times \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{E}$$

$$\varphi = (\varphi_{A,B,C} : F(A,B,B) \to G(A,C,C))_{A,B,C} \longleftrightarrow G(A,C,C)_{A,B,C} \longleftrightarrow G$$

$$F: \mathbb{A} \times \mathbb{B}^{\mathsf{op}} \times \mathbb{B} \to \mathbb{E}, \ G: \mathbb{A} \times \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{E}$$

 $F: \mathbb{A} \times \mathbb{B}^{op} \times \mathbb{B} \to \mathbb{E}, G: \mathbb{A} \times \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{E}$

$$\varphi = (\varphi_{A,B,C} \colon F(A,B,B) \to G(A,C,C))_{A,B,C} \iff F\left(\bigcap_{A \in A} \bigcap_{B \in A} \bigcap_{A \in A} \bigcap_{B \in A} \bigcap_{A \in A} \bigcap_$$

 $F: \mathbb{A} \times \mathbb{B}^{op} \times \mathbb{B} \to \mathbb{E}, G: \mathbb{A} \times \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{E}$

$$\varphi = (\varphi_{A,B,C} \colon F(A,B,B) \to G(A,C,C))_{A,B,C} \iff F\left(\bigcap_{A \in A,B,C} \bigcap_{B \in A,B,C} \bigcap_{A \in A,B,C} \bigcap_{A$$

$$eval = (eval_{A,B} \colon A \times (A \Rightarrow B) \to B)_{A,B \in \mathbb{C}} \iff$$

$$eval = (eval_{A,B} \colon A \times (A \Rightarrow B) \to B)_{A,B \in \mathbb{C}} \iff$$

Eilenberg and Kelly's theorem

Eilenberg and Kelly's theorem

Eilenberg and Kelly's theorem

Theorem (Eilenberg, Kelly 1966)

If the composite graph of φ and ψ is acyclic, then $\psi \circ \varphi$ is extranatural.

Ramifications in the graphs*

 $\mathbb C$ cartesian closed. $(\delta_A \colon A \to A \times A)_{A \in \mathbb C}$ is a natural transformation

^{*}Cf. Kelly, Many-Variable Functorial Calculus I, 1972.

Ramifications in the graphs*

 $\mathbb C$ cartesian closed. $(\delta_A \colon A \to A \times A)_{A \in \mathbb C}$ is a natural transformation

 $\delta \colon \text{id}_{\mathbb{C}} \to \times \text{ with graph}$

. Naturality of δ :

Consider $\chi_{A,B} = (\delta_A \times id_{A\Rightarrow B})$; $(id_A \times eval_{A,B})$: $A \times (A \Rightarrow B) \rightarrow A \times B$.

^{*}Cf. Kelly, Many-Variable Functorial Calculus I, 1972.

Ramifications in the graphs*

 $\mathbb C$ cartesian closed. $(\delta_A \colon A \to A \times A)_{A \in \mathbb C}$ is a natural transformation

 $\delta\colon id_{\mathbb C} o imes$ with graph . Naturality of $\delta\colon$

Consider $\chi_{A,B} = (\delta_A \times id_{A\Rightarrow B})$; $(id_A \times eval_{A,B})$: $A \times (A \Rightarrow B) \rightarrow A \times B$. For $f: A \to A'$ the following commutes:

$$A' \times (A' \Rightarrow B) \xrightarrow{X_{A',B}} A' \times B$$

$$f \times (1 \Rightarrow 1) \nearrow A \times (A' \Rightarrow B)$$

$$1 \times (f \Rightarrow 1)$$

$$A \times (A \Rightarrow B) \xrightarrow{X_{A,B}} A \times B$$

$$f \times 1$$

$$A \times (A \Rightarrow B) \xrightarrow{X_{A,B}} A \times B$$

 χ is natural in B and dinatural in A.

^{*}Cf. Kelly, Many-Variable Functorial Calculus I, 1972.

The result

$$F: \mathbb{C}^{\alpha} \to \mathbb{D}, G: \mathbb{C}^{\beta} \to \mathbb{D}$$
 functors, where $\alpha, \beta \in \text{List}\{+, -\},$
 $\varphi = (\varphi_{A_1,...,A_k})_{A_1,...,A_k \in \mathbb{C}} : F \to G$ and $\psi = (\psi_{B_1,...,B_l})_{B_1,...,B_l \in \mathbb{C}} : G \to H$ dinatural transformations with graph $\Gamma(\varphi)$ and $\Gamma(\psi)$.

Theorem

If the composition of $\Gamma(\varphi)$ and $\Gamma(\psi)$ is acyclic, then $\psi\circ\varphi$ is again dinatural.

Say n= number of upper and lower boxes in $\Gamma(\varphi)$, m= number of black squares in $\Gamma(\varphi)$. The *incidence matrix* of φ is the $n\times m$ matrix A where

$$A_{i,j} = egin{cases} -1 & ext{there is an arc from } i ext{ to } j \ 1 & ext{there is an arc from } j ext{ to } i \ 0 & ext{otherwise} \end{cases}$$

Say n = number of upper and lower boxes in $\Gamma(\varphi)$, m = number of black squares in $\Gamma(\varphi)$. The *incidence matrix* of φ is the $n \times m$ matrix A where

$$A_{i,j} = egin{cases} -1 & ext{there is an arc from } i ext{ to } j \ 1 & ext{there is an arc from } j ext{ to } i \ 0 & ext{otherwise} \end{cases}$$

$$\begin{array}{ccc}
s_1 & s_2 \\
b_1 & -1 & 0 \\
b_2 & 1 & 0 \\
b_3 & 0 & -1 \\
b_4 & 0 & 1
\end{array}$$

Say n= number of upper and lower boxes in $\Gamma(\varphi)$, m= number of black squares in $\Gamma(\varphi)$. The *incidence matrix* of φ is the $n\times m$ matrix A where

$$A_{i,j} = egin{cases} -1 & ext{there is an arc from } i ext{ to } j \ 1 & ext{there is an arc from } j ext{ to } i \ 0 & ext{otherwise} \end{cases}$$

$$\begin{array}{c|cccc} s_1 & s_2 \\ b_1 & -1 & 0 \\ b_2 & 1 & 0 \\ b_3 & 0 & -1 \\ b_4 & 0 & 1 \end{array} \qquad \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Say n= number of upper and lower boxes in $\Gamma(\varphi)$, m= number of black squares in $\Gamma(\varphi)$. The *incidence matrix* of φ is the $n\times m$ matrix A where

$$A_{i,j} = egin{cases} -1 & ext{there is an arc from } i ext{ to } j \ 1 & ext{there is an arc from } j ext{ to } i \ 0 & ext{otherwise} \end{cases}$$

$$M_o(b) = egin{cases} 1 & b ext{ is a white upper/grey lower box} \\ 0 & ext{otherwise} \end{cases}$$

$$M_d(b) = \begin{cases} 1 & b \text{ is a grey upper/white lower box} \\ 0 & \text{otherwise} \end{cases}$$

F(1,f)

F(1,f)

H(f,1)

 $M_o(b) = egin{cases} 1 & b ext{ is a white upper/grey lower box} \\ 0 & ext{otherwise} \end{cases}$ $M_d(b) = \begin{cases} 1 & b \text{ is a grey upper/white lower box } \\ 0 & \text{otherwise} \end{cases}$

> If M_d is reachable from M_o , then $\psi \circ \varphi$ is dinatural.

A reachability result

Theorem (Ichikawa-Hiraishi 1988, paraphrased)

Suppose $\Gamma(\psi) \circ \Gamma(\varphi)$ is acyclic and let M, M' be two markings. Then M' is reachable from M if and only if there is a non-negative integer solution x for

$$Ax + M = M'$$
.

A reachability result

Theorem (Ichikawa-Hiraishi 1988, paraphrased)

Suppose $\Gamma(\psi) \circ \Gamma(\varphi)$ is acyclic and let M, M' be two markings. Then M' is reachable from M if and only if there is a non-negative integer solution x for

$$Ax + M = M'$$
.

Take $x=[1,\ldots,1]$, that is, apply the dinaturality condition of φ and ψ in each of their variables exactly once: it works no matter how many boxes and squares we have!

Theorem

Let $\varphi \colon F \to G$ and $\psi \colon G \to H$ be dinatural transformations. If their composite graph is acyclic, then $\psi \circ \varphi$ is still dinatural.

Theorem

Let $\varphi \colon F \to G$ and $\psi \colon G \to H$ be dinatural transformations. If their composite graph is acyclic, then $\psi \circ \varphi$ is still dinatural.

Definition[†](Sketch)

The category $\{\mathbb{C},\mathbb{D}\}$ consists of the following data.

Theorem

Let $\varphi \colon F \to G$ and $\psi \colon G \to H$ be dinatural transformations. If their composite graph is acyclic, then $\psi \circ \varphi$ is still dinatural.

Definition[†](Sketch)

The category $\{\mathbb{C}, \mathbb{D}\}$ consists of the following data.

Objects: pairs (α, F) , for $\alpha \in \text{List}\{+, -\}$ and $F : \mathbb{C}^{\alpha} \to \mathbb{D}$ functor.

[†]cf. Kelly, Many-Variable Functorial Calculus I, 1972

Theorem

Let $\varphi \colon F \to G$ and $\psi \colon G \to H$ be dinatural transformations. If their composite graph is acyclic, then $\psi \circ \varphi$ is still dinatural.

Definition[†](Sketch)

The category $\{\mathbb{C}, \mathbb{D}\}$ consists of the following data.

Objects: pairs (α, F) , for $\alpha \in \text{List}\{+, -\}$ and $F : \mathbb{C}^{\alpha} \to \mathbb{D}$ functor.

Morphisms $(\alpha, F) \rightarrow (\beta, G)$: triples $(\varphi, \mathcal{G}, \Delta)$ where

- $\varphi = (\varphi_{A_1,...,A_n}) \colon F \to G$ is a transformation,
- $\Delta: \{1, \ldots, n\} \to \{0, 1\}$ is the discriminant function such that $\Delta(i) = 1$ implies φ dinatural in its *i*-th variable,

Theorem

Let $\varphi \colon F \to G$ and $\psi \colon G \to H$ be dinatural transformations. If their composite graph is acyclic, then $\psi \circ \varphi$ is still dinatural.

Definition[†](Sketch)

The category $\{\mathbb{C}, \mathbb{D}\}$ consists of the following data.

Objects: pairs (α, F) , for $\alpha \in \text{List}\{+, -\}$ and $F \colon \mathbb{C}^{\alpha} \to \mathbb{D}$ functor.

Morphisms $(\alpha, F) \rightarrow (\beta, G)$: triples $(\varphi, \mathcal{G}, \Delta)$ where

- $\varphi = (\varphi_{A_1,...,A_n}) \colon F \to G$ is a transformation,
- $\Delta: \{1, ..., n\} \rightarrow \{0, 1\}$ is the *discriminant function* such that $\Delta(i) = 1$ implies φ dinatural in its i-th variable,
- ullet \mathcal{G} is a graph and can be either:
 - the Eilenberg-Kelly graph of φ as defined earlier,
 - a composite of EK graphs of consecutive transformations $\varphi_1, \ldots, \varphi_k$, in which case $\varphi = \varphi_k \circ \cdots \circ \varphi_1$.

[†]cf. Kelly, Many-Variable Functorial Calculus I, 1972