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Dinatural transformations

F,G: C°® x C — D. A dinatural transformation ¢: F — G is a family of
morphisms in D

w = (pa: F(A,A) = G(A A))acc



Dinatural transformations

F,G: C°® x C — D. A dinatural transformation ¢: F — G is a family of
morphisms in D

w = (pa: F(A,A) = G(A A))acc

such that for all f: A — B in C the following commutes:

F(A A) —225 G(A A)

F(f,yv \G(l;f)

F(B,A) G(A B)

F(m %(fv.l)

F(B, B) 5 G(B, B)



...don’'t compose

p: F— G, ¢: G— H dinatural

F(AA) 7 GA A) YA H(A A)
F(y G(fy* \G(l;f) \H(l;f)
F(B, G(A B) H(A, B)

G(B,
N \G@f) R

F(B.B) —,> G(B.B) ——~ H(B.B)



An extraordinary transformation

C cartesian closed category.

eva/AYB: A X (A:> B) — B



An extraordinary transformation

C cartesian closed category.
eva/AYB: A X (A = B) — B
eval is natural in B and for all f: A — A’ the following commutes:

1x(f=1)

Ax (A'= B) Ax (A= B)

fx(lél)l leVQIA,B
eval 51

A x (A= B) =7 . B

since foralla€ Aand g: A — B (gof)(a) = g(f(a)).
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Extranatural transformations (Eilenberg, Kelly 1966)

F:AxB°° xB —E, G: Ax C° x C— E. An extranatural transformation
p: F — G is a family of morphisms in E

o= (paBc: F(A B,B) — G(A,C, C))acaBeB.cec

such that for all f: A?A’, g: BE> B, h: CE>C’

F(A B, B) #25 G(A,C,C) F(A B, B) 23 F(a, B, B)
F(f,l,l)l lG(f,l,l) F(l,l,g)l lm,s,c
F(A', B, B) 2255 G(A', C, C) F(A B' B') 222 G(A,C,C)

F(A B, B) 2225 G(A,C,C)
lpA,B,c’l lG(l,l,h)
G(Lh1)

G(A C',C) 22 G(A ¢, C)



Extranaturals don't compose already

F:AxB®°xB—-E G:AxC?xC—E, H: AxD°® xD — E.
¢: F— G, ¥: G — H extranatural transformations.

bop= ( F(A, B, B) #225 G(A.C,C) Y28 H(A, D, D) )
AB,C,D

is not a well-defined extranatural transformation from F to H.
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A string diagrammatic calculus

F:AxB°"xB—E G:AxCPxC—E

O @ 0O)

o= (pasc: F(A B,B) = G(A C,C))ag.c « M BE (m

¢« @ 0O



A string diagrammatic calculus

F:AxB°"xB—E G:AxCPxC—E

F@ | ?/D)
¢ =(paBc: F(AB,B) = G(A C,C))asc > @ =B cm
(o w o)



A string diagrammatic calculus

F:AxB?"xB—E G:AxCP?xC—E

((pABC F(ABB)—)G(ACC))ABCw E Dé;

F(A, B, B) 2225 G(ACC T/.
F(f.1, 1)1 G(fl 1) e~
F(A', B, B) 2X25 G(A', C, C) a .4 L
¢(J @, )



A string diagrammatic calculus
F:AxB?"xB—E G:AxCP?xC—E
((PABC F(ABB)—)G(ACC A,B,C € E Eéz

vasc ([f]
Fann = anco T o f Y
R

F(A', B, B) 2425 G(A, c Q)

DH



A string diagrammatic calculus

F:AxB?"xB—E G:AxCP?xC—E

((pABC F(ABB)%G(ACC A,B,C “ E Eéz

Tarmtstnann f 7 f P
o([] D/Dr

F(A B' B') 2255 (A, c Q)

o, @, 0



A string diagrammatic calculus

F:AxB®?"xB—E G:AxCPxC—E

= (pag.c: F(A B, B) = G(A, C,C))ap.c o E Eéz

F(A, B, B) 2225 G(A, c ) ? ?
lPABcl G(llh)



A string diagrammatic calculus
eval = (evaIA'B: A x (A = B) — B)A,BGC oy &



A string diagrammatic calculus
D< i?)
eval = (evaIA'B: A x (A = B) — B)A,BGC oy

A’X(A':B)%B’
f><(id:>g)/ \'j
Ax (A" = B) B’
id X (F=>id) N\ /Z

Ax(A:B')TMB»B
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Eilenberg and Kelly's theorem

Tih.ﬂ?H' o
Y0 o

Theorem (Eilenberg, Kelly 1966)

If the composite graph of ¢ and ¥ is acyclic, then i o @ is extranatural.




Ramifications in the graphs*

C cartesian closed. (64: A — A x A)acc is a natural transformation

[]

[TAT]

d: idc — x with graph . Naturality of é:

*Cf. Kelly, Many-Variable Functorial Calculus I, 1972.



Ramifications in the graphs*

C cartesian closed. (64: A — A x A)acc is a natural transformation
§: idc — x with graph g] . Naturality of 4: ! = g]
afh= afhe

Consider XA B = (5,4 X idA:>B) ; (idA X eva/A,B) TAX (A = B) — Ax B.

*Cf. Kelly, Many-Variable Functorial Calculus I, 1972.



Ramifications in the graphs*

C cartesian closed. (64: A — A x A)acc is a natural transformation

§: idc — x with graph g] . Naturality of 4: ! = g]

[TAT] [TAT]_

Consider XA B = (5,4 X idA:>B) ; (idA X eva/A,B) A X (A = B) — AXx B.
For f: A— A’ the following commutes:

XAl,B
A x (A= B)————> A" xB
fx(1¢1)/' \i

Ax (A= B) A x B

1><(f:>1)\ /;Xl

Ax(A:B)T»AxB

x is natural in B and dinatural in A.

*Cf. Kelly, Many-Variable Functorial Calculus I, 1972.



The result

F:C* > D, G: CP — D functors, where a, B € List{+, -},
¢ = (Pa,...A )AL Acec: F— Gand ¥ = (Ys,,5)6,..Bec: G— H
dinatural transformations with graph I'(¢) and ().

If the composition of I'(¢) and I'(9) is acyclic, then ¥ o ¢ is again dinatural.




The incidence matrix

Say n = number of upper and lower boxes in I'(¢p),
m = number of black squares in ['(¢).
The incidence matrix of ¢ is the n x m matrix A where

—1 thereis an arc from j to j
Aij=1<1  thereis an arc from j to i
0  otherwise
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The incidence matrix

Say n = number of upper and lower boxes in I'(¢p),
m = number of black squares in ['(¢).
The incidence matrix of ¢ is the n x m matrix A where

—1 thereis an arc from j to j
Aij=1<1  thereis an arc from j to i
0  otherwise
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The incidence matrix

Say n = number of upper and lower boxes in I'(¢p),
m = number of black squares in ['(¢).
The incidence matrix of ¢ is the n x m matrix A where

—1 thereis an arc from j to j
Aij=1<1  thereis an arc from j to i
0  otherwise

by b by by b b3 s1 S
? [\ by -1 0 17 10
_ b |1 0 [[1],|o] _ |1
| S1 52 S 52 bs 0 1 |:0:| 0 0
by LO 1 ol Lo

by by



A reachability problem
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A reachability problem

—1 0 0 0]

@ ? 0 1 0 0
1 0 -1 0

A=11 o0 o -1

0 -1 0 1

(0 0 1 0

Pop

F(1,f) ’ : H(f.1) Mo(b) = 1 b is a white upper/grey lower box
° 0 otherwise
1 b is a grey upper/white lower box
My(b) =
F(f\ /1 (1.1) a(b) {0 otherwise



A reachability problem

T o

Yop

F(IV - yfm) Mo(b) = {1
° 0

0 0 0]
1 0 0
0 -1 0
0 0 -1
-1 0 1
0 1 0]

b is a white upper/grey lower box
otherwise

b is a grey upper/white lower box
otherwise



A reachability problem

—1 0 0 0]

@ ? 0 1 0 0
1 0 -1 0

A=11 o0 o -1

0 -1 0 1

(0 0 1 0

Pop

F(1,f) ’ : H(f.1) Mo(b) = 1 b is a white upper/grey lower box
° 0 otherwise
1 b is a grey upper/white lower box
My(b) =
F(f\ /1 (1.1) a(b) {0 otherwise

If My is reachable from M,,
then 9 o ¢ is dinatural.




A reachability result

Theorem (Ichikawa-Hiraishi 1988, paraphrased)

Suppose ['(¢) o ['(y) is acyclic and let M, M' be two markings. Then M’ is
reachable from M if and only if there is a non-negative integer solution x for

Ax+M=M".

s
MO?QF, Mdqu)j




A reachability result

Theorem (Ichikawa-Hiraishi 1988, paraphrased)

Suppose ['(¢) o ['(y) is acyclic and let M, M' be two markings. Then M’ is
reachable from M if and only if there is a non-negative integer solution x for

Ax+M=M".

. G
MO?QF, Mdqu)j

Take x =[1,...,1], that is, apply the dinaturality condition of ¢ and ¥ in
each of their variables exactly once: it works no matter how many boxes and
squares we have!




A generalised functor category

Let p: F — G and ¢: G — H be dinatural transformations. If their
composite graph is acyclic, then i o ¢ is still dinatural.
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A generalised functor category

Theorem

Let o: F — G and y: G — H be dinatural transformations. If their
composite graph is acyclic, then i o ¢ is still dinatural.

Definition'(Sketch)

The category {C, D} consists of the following data.
Objects: pairs (o, F), for a € List{+, —} and F: C* — D functor.
Morphisms (o, F) — (B, G): triples (¢, G, A) where
® ¢ =(pa,..A,): F— G is a transformation,
o A:{1,...,n} — {0,1} is the discriminant function such that
A(i) = 1 implies @ dinatural in its i-th variable,
@ G is a graph and can be either:

o the Eilenberg-Kelly graph of ¢ as defined earlier,

e a composite of EK graphs of consecutive transformations o1, .. ., Pk, in
which case ¢ = g0 ---0 1.

Tef. Kelly, Many-Variable Functorial Calculus I, 1972



