Descent and Monadicity

Fernando Lucatelli Nunes¹

¹Centre for Mathematics, University of Coimbra

Category Theory - CT 2019, University of Edinburgh

Aim

Work

The results are within the general context of 2-category theory, or the so called *formal category theory*.

🔋 [Lucatelli Nunes 2019]

Semantic Factorization and Descent

Lucatelli Nunes 2019]

Descent data and absolute Kan extensions

Aim

Work

The results are within the general context of 2-category theory.

Talk

I shall sacrifice generality (even in classical results), in order to give an idea of the elementary consequences on the relation between *(classical/Grothendieck) descent theory and monadicity* in the particular case of the 2-category **Cat** (and, more particularly, right adjoint functors). For instance, within the context of:

- [Bénabou and Roubaud 1970] Monades et descente
- [Janelidze and Tholen 1994]
 - Facets of Descent, I

Monadicity via descent

Outline

Descent category

- Basic definition
- The universal property

Descent theory

- Effective descent morphism
- Bénabou-Roubaud Theorem
- Examples

Monadicity via descent

- Higher cokernel
- (Descent) factorization of functors
- Main theorems

Descent theory

Monadicity via descent

The category Δ_3

Definition of Δ_3

We denote by Δ_3 the category generated by the diagram

with the usual (co)simplicial identities

$$D^1 d^0 = D^0 d^0, \quad D^2 d^1 = D^1 d^1, \quad D^2 d^0 = D^0 d^1$$

 $s^0 d^0 = s^0 d^1 = \mathrm{id}_1$

Descent theory

Monadicity via descent

The descent category

Descent theory

Monadicity via descent

The descent category

 $\mathcal{A}:\Delta_{\textbf{3}}\rightarrow\textbf{Cat}$

Descent theory

Monadicity via descent

The descent category

 $\mathcal{A}: \Delta_3 \rightarrow Cat$

Desc (\mathcal{A})

$$\mathsf{Obj:}\; (X,b); X \in \mathcal{A}(\mathbf{1}), \, b: \mathcal{A}(d^1)X \to \mathcal{A}(d^0)X \text{ in } \mathcal{A}(\mathbf{2})$$

Associativity equation/diagram:

Descent theory

Monadicity via descent

The descent category

$$\mathcal{A}:\Delta_{\textbf{3}}\rightarrow\textbf{Cat}$$

$\mathbf{Desc}\left(\mathcal{A} ight)$

- Obj: (X, b); $X \in \mathcal{A}(1)$, $b : \mathcal{A}(d^1)X \to \mathcal{A}(d^0)X$ in $\mathcal{A}(2)$ satisfying the associativity and identity equations;
 - Mor: $\tilde{f}: (X, b) \to (X', b')$ is a morphism $f: X \to X'$ of $\mathcal{A}(1)$ s.t.

$$\mathcal{A}(d^0)(f) \cdot b = b' \cdot \mathcal{A}(d^1)(f).$$

Descent theory

Monadicity via descent

The descent category

$$\mathcal{A}:\Delta_{\textbf{3}}\rightarrow\textbf{Cat}$$

$\mathbf{Desc}(\mathcal{A})$

- Obj: (X, b); $X \in \mathcal{A}(1)$, $b : \mathcal{A}(d^1)X \to \mathcal{A}(d^0)X$ in $\mathcal{A}(2)$ satisfying the associativity and identity equations;
 - Mor: $\tilde{f}: (X, b) \to (X', b')$ is a morphism $f: X \to X'$ of $\mathcal{A}(1)$ s.t.

$$\mathcal{A}(d^0)(f) \cdot b = b' \cdot \mathcal{A}(d^1)(f).$$

Functor that forgets the descent data w.r.t. \mathcal{A}

 $\text{Desc}\left(\mathcal{A}\right) \to \mathcal{A}(\mathbf{1})$

Descent category as a two dimensional limit

 $\operatorname{Desc} (\mathcal{A})$ is a two dimensional limit of $\mathcal{A} : \Delta_3 \to Cat$ in Cat.

[Ross Street 1976]

Limits indexed by category-valued 2-functors

[Lucatelli Nunes 2019]

Semantic Factorization and descent

Monadicity via descent

Descent category as a two dimensional limit

 $\operatorname{Desc}(\mathcal{A})$ is a two dimensional limit of $\mathcal{A}: \Delta_3 \to Cat$ in Cat.

The universal property of the descent category

$$\mathbb{D}\xrightarrow{F}\mathcal{A}(\mathbf{1})$$

Descent theory

Monadicity via descent

Descent category as a two dimensional limit

Desc (\mathcal{A}) is a two dimensional limit of $\mathcal{A} : \Delta_3 \rightarrow Cat$ in Cat.

The universal property of the descent category

 $\mathbb{D}\xrightarrow{\mathit{F}}\mathcal{A}(\mathbf{1})$

satisfying associativity and identity equations w.r.t. \mathcal{A} .

$$\mathcal{K}^{\gamma}(W) = (F(Y), \gamma_{W})$$

Descent theory ●○○○○ Monadicity via descent

Basic factorization

- \mathbb{C} with pullbacks;
- **2** $\mathcal{F} : \mathbb{C}^{op} \to \mathbf{Cat};$

Basic factorization

C with pullbacks;
 F : C^{op} → Cat;

 $p \in \mathbb{C}(E, B)$

Descent theory ●○○○○ Monadicity via descent

Basic factorization

 $\begin{array}{l} \bullet \quad \mathbb{C} \text{ with pullbacks;} \\ \bullet \quad \mathcal{F}: \mathbb{C}^{\mathrm{op}} \to \mathbf{Cat}; \\ \boldsymbol{\rho} \in \mathbb{C}(\boldsymbol{E}, \boldsymbol{B}) \\ & \Delta^{\mathrm{op}}_{\mathbf{3}} \to \mathbb{C} \end{array}$

$$E \times_B E \times_B E \xrightarrow{\longrightarrow} E \times_B E \xrightarrow{\longrightarrow} E$$

Descent theory ●○○○○ Monadicity via descent

Basic factorization

C with pullbacks; **2** $\mathcal{F}: \mathbb{C}^{op} \to \mathbf{Cat}:$ $p \in \mathbb{C}(E, B)$ $\Delta^{\operatorname{op}}_{\mathbf{3}} \to \mathbb{C}$ $E \times_B E \times_B E \longrightarrow E \times_B E \longleftarrow E$ $\mathcal{F}_{\mathcal{D}}: \Delta_{\mathbf{3}} \to \mathbf{Cat}$ $\mathcal{F}(E) \xrightarrow{\longrightarrow} \mathcal{F}(E \times_B E) \xrightarrow{\longrightarrow} \mathcal{F}(E \times_B E \times_B E)$

Descent theory ●○○○○ Monadicity via descent

Basic factorization

C with pullbacks;
F: C^{op} → Cat;
C(E, B)
F(E) $\xrightarrow{\longrightarrow}$ F(E ×_B E) $\xrightarrow{\longrightarrow}$ F(E ×_B E ×_B E)

Descent theory ●○○○○ Monadicity via descent

Basic factorization

C with pullbacks; **2** $\mathcal{F}: \mathbb{C}^{op} \to \mathbf{Cat}:$ $p \in \mathbb{C}(E, B)$ $\mathcal{F}_{\mathcal{D}}: \Delta_{\mathbf{3}} \rightarrow \mathbf{Cat}$ $\mathcal{F}(E) \xleftarrow{\mathcal{F}(E \times_B E)} \mathcal{F}(E \times_B E \times_B E)$ $\mathcal{F}(E)$ $\mathcal{F}(p)$ $\mathcal{F}(E \times_B E)$ $\mathcal{F}(B)$ \cong $\mathcal{F}(p)$

 $\mathcal{F}(B)$

Descent theory ●○○○○ Monadicity via descent

Basic factorization

C with pullbacks;
 F: C^{op} → Cat;

 $p \in \mathbb{C}(E, B)$

$\mathcal{F}_{m{ ho}}:\Delta_{m{3}} ightarrow{m{Cat}}$

Descent theory

Monadicity via descent

Basic factorization

 \bigcirc \mathbb{C} with pullbacks; **2** $\mathcal{F}: \mathbb{C}^{op} \to \mathbf{Cat}:$ $p \in \mathbb{C}(E, B)$ $\mathcal{F}_{\mathcal{D}}: \Delta_{\mathbf{3}} \rightarrow \mathbf{Cat}$ $\mathcal{F}(E) \xrightarrow{\longrightarrow} \mathcal{F}(E \times_B E) \xrightarrow{\longrightarrow} \mathcal{F}(E \times_B E \times_B E)$ $\mathcal{F}(p)$ $\mathcal{F}(B)$ $\rightarrow \mathcal{F}(E) = \mathcal{F}_{\mathcal{D}}(\mathbf{1})$ κ_D $\text{Desc}(\mathcal{F}_{p})$ $(\mathcal{F}$ -descent factorization)

Descent theory ●○○○○ Monadicity via descent

Basic factorization

 \bigcirc \mathbb{C} with pullbacks; **2** $\mathcal{F}: \mathbb{C}^{op} \to \mathbf{Cat}:$ $p \in \mathbb{C}(E, B)$ $\mathcal{F}_{\mathcal{D}}: \Delta_{\mathbf{3}} \rightarrow \mathbf{Cat}$ $\mathcal{F}(E) \xrightarrow{\longrightarrow} \mathcal{F}(E \times_B E) \xrightarrow{\longrightarrow} \mathcal{F}(E \times_B E \times_B E)$ $\mathcal{F}(p)$ $\rightarrow \mathcal{F}(E) = \mathcal{F}_{D}(\mathbf{1})$ $\mathcal{F}(B)$ \mathcal{K}_{D} $\text{Desc}(\mathcal{F}_p)$ $(\mathcal{F}$ -descent factorization)

Definition

p is of *effective* \mathcal{F} -*descent* if \mathcal{K}_p is an equivalence.

Bénabou-Roubaud Theorem

Hypotheses of the Bénabou-Roubaud Theorem

- \mathbb{C} with pullbacks;
- $2 \ \mathcal{F} : \mathbb{C}^{op} \to \mathbf{CAT};$
- ③ $\mathcal{F}(q)$! \dashv $\mathcal{F}(q)$, for all q;
- 9 \mathcal{F} satisfies the so called Beck-Chevalley condition.

Bénabou-Roubaud Theorem

Bénabou-Roubaud Theorem

- \mathbb{C} with pullbacks;
- **2** $\quad \mathcal{F}: \mathbb{C}^{op} \to \mathbf{CAT};$
- 3 $\mathcal{F}(q)! \dashv \mathcal{F}(q)$, for all q;
- *F* satisfies the so called Beck-Chevalley condition.

Corollary

Hypotheses of the Bénabou-Roubaud Theorem

- \bigcirc \mathbb{C} with pullbacks;
- $2 \ \mathcal{F}: \mathbb{C}^{op} \to \mathbf{CAT};$
- 3 $\mathcal{F}(q)! \dashv \mathcal{F}(q)$, for all q;
- Beck-Chevalley condition.

Corollary

p of effective \mathcal{F} -descent if and only if $\mathcal{F}(p)$ is monadic.

Corollary

Hypotheses of the Bénabou-Roubaud Theorem

- \bigcirc \mathbb{C} with pullbacks;
- $2 \ \mathcal{F} : \mathbb{C}^{op} \to \mathbf{CAT};$
- 3 $\mathcal{F}(q)! \dashv \mathcal{F}(q)$, for all q;
- Beck-Chevalley condition.

Corollary

p of effective \mathcal{F} -descent if and only if $\mathcal{F}(p)$ is monadic.

Observation

It characterizes descent via monadicity

Corollary

Hypotheses of the Bénabou-Roubaud Theorem

- \bigcirc \mathbb{C} with pullbacks;
- **2** $\quad \mathcal{F} : \mathbb{C}^{op} \to \mathbf{CAT};$
- 3 $\mathcal{F}(q)! \dashv \mathcal{F}(q)$, for all q;
- Beck-Chevalley condition.

Corollary

p of effective \mathcal{F} -descent if and only if $\mathcal{F}(p)$ is monadic.

Observation

It characterizes *descent via monadicity*: the problem of descent reduces to the problem of monadicity under the hypothesis of the Beck-Chevalley condition.

Descent theory

Monadicity via descent

Basic (Counter)example

2 is the category $0 \xrightarrow{u} 1$

Descent theory

Monadicity via descent

Basic (Counter)example

2 is the category $0 \xrightarrow{u} 1$

 $\mathcal{F}: 2^{op} \to \textbf{Cat}$

Descent theory

Monadicity via descent

Basic (Counter)example

2 is the category $0 \xrightarrow{u} 1$

$$\mathcal{F}: 2^{op} \to \textbf{Cat}$$

Descent theory

Monadicity via descent

Basic (Counter)example

Descent theory

Monadicity via descent

Basic (Counter)example

Therefore if *G* is monadic (and not an equivalence), defining $\mathcal{F}(u) = G$, *u* is not of effective \mathcal{F} -descent but $\mathcal{F}(u)$ is monadic.

Descent theory

Monadicity via descent

Basic (Counter)example

- *u* of effective \mathcal{F} -descent $\iff \mathcal{F}(u)$ equivalence;
- \mathcal{F} satisfies Beck-Chevalley $\iff \mathcal{F}(u)! \dashv \mathcal{F}(u)$ and $\mathcal{F}(u)!$ fully faithful.

Therefore if *G* is monadic (and not an equivalence), defining $\mathcal{F}(u) = G$, *u* is not of effective \mathcal{F} -descent but $\mathcal{F}(u)$ is monadic.

More structured examples

Non-effective of descent morphisms inducing monadic functors

- [Manuela Sobral 2004]

Descent for discrete (co)fibrations.

[Margarida Melo 2004]

Master's thesis: Monadicidade e descida - da fibração básica à fibração dos pontos.

Descent theory

Monadicity via descent

Higher cokernel

 $G:\mathbb{A}
ightarrow \mathbb{B}$

Higher cokernel

The higher cokernel $\mathcal{H}_G : \Delta_3 \to Cat$ of $G : \mathbb{A} \to \mathbb{B}$.

Categorical and combinatorial aspects of descent theory.

Steve Lack 2002]

Codescent objects and coherence

Descent theory

Monadicity via descent

Higher cokernel

The higher cokernel $\mathcal{H}_G : \Delta_3 \to Cat$ of $G : \mathbb{A} \to \mathbb{B}$.

[Ross Street 1974] Elementary cosmoi. I.

Descent theory

Monadicity via descent

Higher cokernel

Descent theory

Monadicity via descent

Higher cokernel

The higher cokernel $\mathcal{H}_G : \Delta_3 \to Cat$ of $G : \mathbb{A} \to \mathbb{B}$.

TR

 $Id_{\mathbb{B}}$

 $Id_{\mathbb{B}}$

Descent theory

Monadicity via descent

Higher cokernel

Descent theory

Monadicity via descent

Higher cokernel

$$\mathbb{B} \xrightarrow[i_1]{i_1} \mathbb{B} \uparrow_G \mathbb{B} \xrightarrow[\mathcal{I}_2]{\mathcal{I}_2} \mathbb{B} \uparrow_G \mathbb{B} \uparrow_G \mathbb{B}$$

Descent theory

Monadicity via descent

Higher cokernel

The higher cokernel $\mathcal{H}_G : \Delta_3 \to Cat$ of $G : \mathbb{A} \to \mathbb{B}$.

=

Descent theory

Monadicity via descent

(Descent) factorization of functors

=

Descent theory

Monadicity via descent

(Descent) factorization of functors

 $\mathcal{H}_{G}: \Delta_{3} \rightarrow Cat$

satisfies the associativ. and ident. eq's w.r.t. $\mathcal{H}_{G}.$

Descent theory

Monadicity via descent

(Descent) factorization of functors

Descent theory

Monadicity via descent

(Descent) factorization of functors

(factorization (of any functor) induced by the higher cokernel)

Descent theory

Monadicity via descent

Contributions on monadicity via descent

(factorization of G induced by the higher cokernel \mathcal{H}_G)

Descent theory

Monadicity via descent

Contributions on monadicity via descent

 $G:\mathbb{A} o\mathbb{B}$ $\mathcal{H}_G:\Delta_{\mathbf{3}} o\mathsf{Cat}$

(factorization of G induced by the higher cokernel \mathcal{H}_G)

Theorem A

- If *G* has a left adjoint, then the factorization above coincides with the Eilenberg-Moore factorization of *G*;
- If *G* has a right adjoint, then the factorization above coincides with the factorization of *G* through the coalgebras.

Monadicity via descent

Contributions on monadicity via descent

(factorization of G induced by the higher cokernel \mathcal{H}_G)

Theorem A

- If G has a left adjoint, then the factorization above coincides with the Eilenberg-Moore factorization of G;
- If *G* has a right adjoint, then the factorization above coincides with the factorization of *G* through the coalgebras.

Corollary A.1

If *G* has a left adjoint: then *G* is monadic if and only if \mathcal{K}^G is an equivalence (*G* is effective faithful functor).

Contributions on monadicity via descent

Theorem A

- If *G* has a left adjoint, then the factorization above coincides with the Eilenberg-Moore factorization of *G*;
- If *G* has a right adjoint, then the factorization above coincides with the factorization of *G* through the coalgebras.

Corollary A.1

If *G* has a left adjoint: then *G* is monadic if and only if \mathcal{K}^G is an equivalence (*G* is effective faithful functor).

Theorem B

For any pseudofunctor $\mathcal{A} : \Delta_3 \rightarrow Cat$,

$$\text{Desc}\left(\mathcal{A}\right) \to \mathcal{A}(\mathbf{1})$$

creates absolute limits and colimits.

Contributions on monadicity via descent

Theorem A

If G has a left adjoint, then the factorization above coincides with the Eilenberg-Moore factorization of G;

Corollary A.1

If *G* has a left adjoint: then *G* is monadic if and only if \mathcal{K}^G is an equivalence (*G* is effective faithful functor).

Theorem B

If *G* is the composition of a functor that forgets descent data w.r.t. some $\mathcal{A} : \Delta_3 \to Cat$ with any equivalence, then it creates absolute limits and colimits.

Contributions on monadicity via descent

Theorem A

If G has a left adjoint, then the (descent) factorization induced by the higher cokernel coincides with the Eilenberg-Moore factorization of G.

Corollary A.1

If *G* has a left adjoint: then *G* is monadic if and only if \mathcal{K}^G is an equivalence (*G* is effective faithful functor).

Theorem B

If G is the composition of a functor that forgets descent data with any equivalence, then it creates absolute limits and colimits.

Corollary B.1

A right adjoint functor *G* is monadic if and only if it is a functor that forgets descent data (w.r.t. some A).

Final observation

Corollary B.1

A right adjoint functor *G* is monadic if and only if it is a functor that forgets descent data (w.r.t. some A).

Final observation

Corollary B.1

A right adjoint functor *G* is monadic if and only if it is a functor that forgets descent data (w.r.t. some A).

- C with pullbacks;
- **2** $\mathcal{F} : \mathbb{C}^{op} \to \mathbf{CAT}.$

Final observation

Corollary B.1

A right adjoint functor *G* is monadic if and only if it is a functor that forgets descent data (w.r.t. some A).

- \mathbb{C} with pullbacks;
- **2** $\mathcal{F} : \mathbb{C}^{op} \to \mathbf{CAT}.$

Corollary B.1.1

If *p* is of effective \mathcal{F} -descent and $\mathcal{F}(p)$ has a left adjoint, then $\mathcal{F}(p)$ is monadic.

Monadicity via descent

Thank you!