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The results are within the general context of 2-category theory,
or the so called formal category theory.

[d [Lucatelli Nunes 2019]
Semantic Factorization and Descent

[ [Lucatelli Nunes 2019]
Descent data and absolute Kan extensions



The results are within the general context of 2-category theory.

| shall sacrifice generality (even in classical results), in order to
give an idea of the elementary consequences on the relation
between (classical/Grothendieck) descent theory and
monadicity in the particular case of the 2-category Cat (and,
more particularly, right adjoint functors). For instance, within the
context of:

[§ [Bénabou and Roubaud 1970]
Monades et descente

[§ [Janelidze and Tholen 1994]
Facets of Descent, |



o Descent category
@ Basic definition
@ The universal property

9 Descent theory
@ Effective descent morphism
@ Bénabou-Roubaud Theorem
@ Examples

0 Monadicity via descent
@ Higher cokernel
@ (Descent) factorization of functors
@ Main theorems



Descent category
e0
The category A3

Definition of A3

We denote by Ag the category generated by the diagram

do DO
1 50 2 D’ 3
d! D?

with the usual (co)simplicial identities

D'd® = D°d°, D?d' = D'd', D?d° = D°d"

s%d0 = %" =id,
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A:A3—>Cﬂt

@ Obj: (X, b); X € A(1), b: A(d")X — A(d®)X in A(2)




Descent category
oe

The descent category

A:A3—>Cﬂt

@ Obj: (X, b); X € A(1), b: A(d")X — A(d®)X in A(2)

Associativity equation/diagram:

1
A(D")A(d")(X) i A(D")A(d)(X)

7 A(D?)A(d")(X) = A(DY)A()(X)
~. /7 \ et

2
A(D! )(b)_A(Dz).A(do)(X) A(DO)A(d1)(X)

Identity equation/diagram: X \ idy /

T A A(ANX ——> A(L)A(d0)X
A(s9)(b)
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oe
The descent category

A:As—)Cﬂt

@ Obj: (X,b); X € A(1), b: A(d")X — A(d°)X in A(2) satisfying
the associativity and identity equations;

@ Mor: 7: (X, b) — (X', ') is a morphism f : X — X’ of A(1) s..

A(AO)(f) - b= b - A(d")(f).
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oe
The descent category

A:A3—>Cﬂt

Desc (A)

@ Obj: (X,b); X € A(1), b: A(d")X — A(d°)X in A(2) satisfying
the associativity and identity equations;

@ Mor: 7: (X, b) — (X', ') is a morphism f : X — X’ of A(1) s..

A(AO)(f) - b= b - A(d")(f).

Functor that forgets the descent data w.r.t. A

Desc (A) — A(1)




Descent category
[ ]
Descent category as a two dimensional limit

Desc (\A) is a two dimensional limit of A : A3 — Cat in Cat.

[§ [Ross Street 1976]
Limits indexed by category-valued 2-functors

[@ [Lucatelli Nunes 2019]
Semantic Factorization and descent
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[ ]
Descent category as a two dimensional limit

Desc (A) is a two dimensional limit of A : Az — Cat in Cat.

The universal property of the descent category

D5 A1)

F D F A1)
D fiy AR |~ | N T

\ / 1 Desc (A)
A1) A@)

4

satisfying associativity and identity equations w.r.t. A.

KY(W) = (F(Y): )
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@ C with pullbacks;
Q F:C° - Cat;
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Descent theory
[ ]
Basic factorization

@ C with pullbacks;
Q F:C° - Cat;

p € C(E,B)
A —C

EXBEXBEHEXBE%E

Fp: Az — Cat
‘F(E)%]‘—(E XB E)4>‘7'—(E XBEXB E)



Descent theory
[ ]
Basic factorization

@ C with pullbacks;
Q F:C° - Cat;

p € C(E,B)

]:(E):f(E XBE):;]:(EXBEXBE)

N

EXBE

N,



Descent theory
[ ]
Basic factorization

@ C with pullbacks;
Q F:C° - Cat;

p € C(E,B)

]:(E):f(E XBE):;]:(EXBEXBE)

s \

F(E xg E)

F(p) /

N

PE



Descent theory
[ ]
Basic factorization

@ C with pullbacks;
Q F:C° - Cat;

p € C(E,B)

]:(E):f(E XBE):;]:(EXBEXBE)

F(p.

/ \ #8) F(p) (1)
TiExe® \ /

% /

Des(. _7:p



Descent theory
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Basic factorization

@ C with pullbacks;
Q F:C° - Cat;

p € C(E,B)

]:(E):f(E XBE):;]:(EXBEXBE)

\/

Desc ( .Fp

= Fp(1)

(F-descent factorization)



Descent theory
[ ]
Basic factorization

@ C with pullbacks;
Q F:C° - Cat;
p € C(E, B)
Fp: Az — Cat

]:(E)<7.7:(E XB E)H]:(E XBEXB E)

o

Desc ( ]:p

= Fp(1)

(F-descent factorization)

Definition
p is of effective F-descent if K is an equivalence.




Descent theory
[ Jol
Bénabou-Roubaud Theorem

Hypotheses of the Bénabou-Roubaud Theorem
@ C with pullbacks;
Q@ F:C° - CAT;
Q@ F(q)! 4 F(q), forall g;
© T satisfies the so called Beck-Chevalley condition.




Descent theory
[ Jol
Bénabou-Roubaud Theorem

Bénabou-Roubaud Theorem

@ C with pullbacks;

Q@ F:C° — CAT;

Q 7(q9)! 4 F(q), forall g;

© T satisfies the so called Beck-Chevalley condition.

) F(E) = Fp(1) coincides with the

N

Desc (Fp)
Eilenberg-Moore factorization of the right adjoint functor F(p).
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Corollary

Hypotheses of the Bénabou-Roubaud Theorem
@ C with pullbacks;
Q@ F:C° - CAT;
Q 7(q9)! 4 F(q), forall g;
© Beck-Chevalley condition.

p of effective F-descent if and only if F(p) is monadic.
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@ C with pullbacks;
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It characterizes descent via monadicity
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oe
Corollary

Hypotheses of the Bénabou-Roubaud Theorem
@ C with pullbacks;
Q@ F:C° - CAT;
Q 7(q9)! 4 F(q), forall g;
© Beck-Chevalley condition.

p of effective F-descent if and only if F(p) is monadic.

Observation

It characterizes descent via monadicity: the problem of descent
reduces to the problem of monadicity under the hypothesis of
the Beck-Chevalley condition.
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Basic (Counter)example

2 is the category 0 2 1

F :2°° — Cat

F(0)

% /

F(1) =~ Desc (Fy)
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F :2°° — Cat

F(1) ~ Desc (Fy)

@ u of effective F-descent <= F(u) equivalence;

Therefore if G is monadic (and not an equivalence), defining
F(u) = G, uis not of effective F-descent but F(u) is monadic.



Descent theory
L 1)
Basic (Counter)example

F :2°° — Cat

F(1) ~ Desc (Fy)

@ u of effective F-descent <= F(u) equivalence;

@ F satisfies Beck-Chevalley <= F(u)! H F(u) and F(u)!
fully faithful.

Therefore if G is monadic (and not an equivalence), defining
F(u) = G, uis not of effective F-descent but F(u) is monadic.



Descent theory
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More structured examples

Non-effective of descent morphisms inducing monadic

functors

[§ [Manuela Sobral 2004]
Descent for discrete (co)fibrations.

[§ [Margarida Melo 2004]
Master’s thesis: Monadicidade e descida - da fibragao
bésica a fibragado dos pontos.




Monadicity via descent
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Higher cokernel

G:A—=B



Monadicity via descent
e0

Higher cokernel

The higher cokernel Hg : Az — Catof G: A — B.

[§ [Ross Street 2004]
Categorical and combinatorial aspects of descent theory.

[§ [Steve Lack 2002]
Codescent objects and coherence



Monadicity via descent
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Higher cokernel

The higher cokernel Hg : Az — Catof G: A — B.

Opcomma category

B1gB

[4 [Ross Street 1974]
Elementary cosmoi. I.



Monadicity via descent
e0

Higher cokernel

The higher cokernel Hg : Az — Catof G: A — B.

Opcomma category

B1gB

A
IB/ \IB%
W

B1g B

{e




Monadicity via descent
e0

Higher cokernel

The higher cokernel Hg : Az — Catof G: A — B.

Opcomma category

B1gB

A
DN
N

1 0

B1g B

{e

A A
/ AN

E (domain,Idy) (codomain,Idg) G

v NS N

B 2 x A B
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Higher cokernel

The higher cokernel Hg : Az — Catof G: A — B.
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Higher cokernel

The higher cokernel Hg : Az — Catof G: A — B.

ip
B<s—B1tgB

i

A A
/ AN

G (domain,Idy) (codomain,Idg) G

P N N

B 2 x A B



Monadicity via descent
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Higher cokernel

The higher cokernel Hg : Az — Catof G: A — B.

ip
B<s—B1tgB

i

A A
G/ (domain,Idy) (codomain,Idg) \G
4 NS N
B 2 x A B

Gopuo,
IdB \L/ IdB



Monadicity via descent
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Higher cokernel

The higher cokernel Hg : Az — Catof G: A — B.

10 IO
B<s—B1gB ig Up i1
18] Ig
B1tg B
N
B o Lp 14
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Higher cokernel

The higher cokernel Hg : Az — Catof G: A — B.

iy To
B<s— B 1gB B1gB 1B
iy T,



Monadicity via descent
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Higher cokernel

The higher cokernel Hg : A3 — Catof G: A — B.

ig To
B<s—BtgB—Zi=B1tgB1gB
i [
A
G/ \G %\
N
\i1 iO/
\ / ldIz*a Idl-o*a
BteB Toig = T iy B

3 s

BtcB 1B BteB T B



Monadicity via descent
[ ]

(Descent) factorization of functors

Hg: Az — Cat
ig To
B<s—BtgB—Zi=B1tgB1gB
iq I
\ -
= =
< - pa /A \
\ / 1z, *a 14z, o
BTGB 1210—1011
n) E\\ / /I"“J

BtcB1gB BtgB1cB



Monadicity via descent
[ ]

(Descent) factorization of functors

Hg: Az — Cat
B<s—B1tgB—-—Zi=B1gB1gB
i T
B = B satisfies the associativ. and ident. eq’s w.r.t. Hg.



Monadicity via descent
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(Descent) factorization of functors

Hg: As — Cat

ig Ty
B<s—BtgB—Zi=BtgB 1B
i I




Monadicity via descent
[ ]

(Descent) factorization of functors

Hg: As — Cat

B<s—B1gB—i~B1gB 1B
i T

A G

Desc (Hg)
(factorization (of any functor) induced by the higher cokernel)

B



Monadicity via descent
[ le]

Contributions on monadicity via descent

G:A—B
/H(;ZAsﬁcat

N

Desc (Hg)
(factorization of G induced by the higher cokernel Hg)




Monadicity via descent
[ le]

Contributions on monadicity via descent

G:A—B
H62A3*>Cﬂt

Desc (M)
(factorization of G induced by the higher cokernel Hg)

Theorem A

@ If G has a left adjoint, then the factorization above coincides with
the Eilenberg-Moore factorization of G;

@ If G has a right adjoint, then the factorization above coincides
with the factorization of G through the coalgebras.



Monadicity via descent
[ le]

Contributions on monadicity via descent

A B (factorization of G induced by the higher cokernel H )

>N

Desc (Hg)

@ If G has a left adjoint, then the factorization above coincides with
the Eilenberg-Moore factorization of G;

@ If G has a right adjoint, then the factorization above coincides
with the factorization of G through the coalgebras.

Corollary A.1

If G has a left adjoint: then G is monadic if and only if K€ is an
equivalence (G is effective faithful functor).




Monadicity via descent
[ le]

Contributions on monadicity via descent

@ If G has a left adjoint, then the factorization above coincides with
the Eilenberg-Moore factorization of G;

@ If G has a right adjoint, then the factorization above coincides
with the factorization of G through the coalgebras.

Corollary A.1

If G has a left adjoint: then G is monadic if and only if <€ is an
equivalence (G is effective faithful functor).

Theorem B
For any pseudofunctor A : A3 — Cat,

Desc (A) — A(1)

creates absolute limits and colimits.




Monadicity via descent
[ le]

Contributions on monadicity via descent

Theorem A

If G has a left adjoint, then the factorization above coincides with the
Eilenberg-Moore factorization of G;

Corollary A.1

If G has a left adjoint: then G is monadic if and only if ¢ is an
equivalence (G is effective faithful functor).

Theorem B

If G is the composition of a functor that forgets descent data w.r.t.
some A : Az — Cat with any equivalence, then it creates absolute
limits and colimits.




Monadicity via descent
[ le]

Contributions on monadicity via descent

Theorem A

If G has a left adjoint, then the (descent) factorization induced by the
higher cokernel coincides with the Eilenberg-Moore factorization of G.

Corollary A.1

If G has a left adjoint: then G is monadic if and only if XC is an
equivalence (G is effective faithful functor).

Theorem B

If G is the composition of a functor that forgets descent data with any
equivalence, then it creates absolute limits and colimits.

Corollary B.1

A right adjoint functor G is monadic if and only if it is a functor that
forgets descent data (w.r.t. some A).




Monadicity via descent
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Final observation

Corollary B.1

A right adjoint functor G is monadic if and only if it is a functor
that forgets descent data (w.r.t. some A).
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Final observation

Corollary B.1

A right adjoint functor G is monadic if and only if it is a functor
that forgets descent data (w.r.t. some A).

@ C with pullbacks;
Q F:C® — CAT.



Monadicity via descent
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Final observation

Corollary B.1

A right adjoint functor G is monadic if and only if it is a functor
that forgets descent data (w.r.t. some A).

@ C with pullbacks;
Q F:C® — CAT.

Corollary B.1.1

If p is of effective F-descent and F(p) has a left adjoint, then
F(p) is monadic.




O
Thank you!
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