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Aim

Work
The results are within the general context of 2-category theory,
or the so called formal category theory.

[Lucatelli Nunes 2019]
Semantic Factorization and Descent

[Lucatelli Nunes 2019]
Descent data and absolute Kan extensions
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Aim

Work
The results are within the general context of 2-category theory.

Talk
I shall sacrifice generality (even in classical results), in order to
give an idea of the elementary consequences on the relation
between (classical/Grothendieck) descent theory and
monadicity in the particular case of the 2-category Cat (and,
more particularly, right adjoint functors). For instance, within the
context of:

[Bénabou and Roubaud 1970]
Monades et descente

[Janelidze and Tholen 1994]
Facets of Descent, I
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2 Descent theory
Effective descent morphism
Bénabou-Roubaud Theorem
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Main theorems
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The category ∆3

Definition of ∆3

We denote by ∆3 the category generated by the diagram

1
d0

//

d1
//
2s0oo

D0
//

D1 //

D2
//
3

with the usual (co)simplicial identities

D1d0 = D0d0, D2d1 = D1d1, D2d0 = D0d1

s0d0 = s0d1 = id1
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The descent category

A : ∆3 → Cat

A(1)

A(d0) //

A(d1)

//
A(2)A(s0)oo

A(D0) //
A(D1) //

A(D2)

//
A(3)
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The descent category

A : ∆3 → Cat

Desc (A)

Obj: (X ,b); X ∈ A(1), b : A(d1)X → A(d0)X in A(2)
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The descent category

A : ∆3 → Cat

Desc (A)

Obj: (X ,b); X ∈ A(1), b : A(d1)X → A(d0)X in A(2)

Associativity equation/diagram:

A(D1)A(d1)(X)
A(D1)(b) //

44
∼= **

A(D1)A(d0)(X) jj
∼=tt

A(D2)A(d1)(X)

A(D2)(b)
((

A(D0)A(d0)(X)

A(D2)A(d0)(X)

��

∼=

��
A(D0)A(d1)(X)

A(D0)(b)

66

Identity equation/diagram: X idX //jj
∼= **

X

A(s0)A(d1)X
A(s0)(b)

// A(s0)A(d0)X
tt ∼=

44
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The descent category

A : ∆3 → Cat

Desc (A)

Obj: (X ,b); X ∈ A(1), b : A(d1)X → A(d0)X in A(2) satisfying
the associativity and identity equations;

Mor: f̃ : (X ,b)→ (X ′,b′) is a morphism f : X → X ′ of A(1) s.t.

A(d0)(f ) · b = b′ · A(d1)(f ).



Descent category Descent theory Monadicity via descent

The descent category

A : ∆3 → Cat

Desc (A)

Obj: (X ,b); X ∈ A(1), b : A(d1)X → A(d0)X in A(2) satisfying
the associativity and identity equations;

Mor: f̃ : (X ,b)→ (X ′,b′) is a morphism f : X → X ′ of A(1) s.t.

A(d0)(f ) · b = b′ · A(d1)(f ).

Functor that forgets the descent data w.r.t. A

Desc (A)→ A(1)
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Descent category as a two dimensional limit

Desc (A) is a two dimensional limit of A : ∆3 → Cat in Cat.

[Ross Street 1976]
Limits indexed by category-valued 2-functors

[Lucatelli Nunes 2019]
Semantic Factorization and descent
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Descent category as a two dimensional limit

Desc (A) is a two dimensional limit of A : ∆3 → Cat in Cat.

The universal property of the descent category

D F−→ A(1)
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Descent category as a two dimensional limit

Desc (A) is a two dimensional limit of A : ∆3 → Cat in Cat.

The universal property of the descent category

D F−→ A(1)


A(1) A(d0)

$$
D

F <<

F ""
⇑ γ A(2)

A(1) A(d
1)

::

 7→
 D F //

Kγ $$

A(1)

Desc (A)

88


↑

satisfying associativity and identity equations w.r.t. A.

Kγ(W ) = (F (Y ), γW )
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Basic factorization

1 C with pullbacks;
2 F : Cop → Cat;
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Basic factorization

1 C with pullbacks;
2 F : Cop → Cat;

p ∈ C(E ,B)
∆op

3 → C

E ×B E ×B E
////// E ×B E

//
// Eoo

Fp : ∆3 → Cat

F(E)
//
// F(E ×B E)oo ////// F(E ×B E ×B E)
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Basic factorization

1 C with pullbacks;
2 F : Cop → Cat;

p ∈ C(E ,B)
Fp : ∆3 → Cat

F(E)
//
// F(E ×B E)oo ////// F(E ×B E ×B E)

E
p

��
B E ×B E

cc

{{
E

p

__
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Basic factorization

1 C with pullbacks;
2 F : Cop → Cat;

p ∈ C(E ,B)
Fp : ∆3 → Cat

F(E)
//
// F(E ×B E)oo ////// F(E ×B E ×B E)

F(E)

∼=
&&

F(B)

F(p)
;;

F(p) ##

F(E ×B E)

F(B)

88
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Basic factorization

1 C with pullbacks;
2 F : Cop → Cat;

p ∈ C(E ,B)
Fp : ∆3 → Cat

F(E)
//
// F(E ×B E)oo ////// F(E ×B E ×B E)

F(E)

∼=
$$

F(B)

F(p)

<<

F(p) ""

F(E ×B E)

F(E)

::

F(B)
F(p) //

Kp $$

F(E) = Fp(1)

Desc
(
Fp

)
88
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Basic factorization

1 C with pullbacks;
2 F : Cop → Cat;

p ∈ C(E ,B)
Fp : ∆3 → Cat

F(E)
//
// F(E ×B E)oo ////// F(E ×B E ×B E)

F(B)
F(p) //

Kp %%

F(E) = Fp(1)

Desc (Fp)

77

(F-descent factorization)
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Basic factorization

1 C with pullbacks;
2 F : Cop → Cat;

p ∈ C(E ,B)
Fp : ∆3 → Cat

F(E)
//
// F(E ×B E)oo ////// F(E ×B E ×B E)

F(B)
F(p) //

Kp %%

F(E) = Fp(1)

Desc (Fp)

77

(F-descent factorization)

Definition
p is of effective F-descent if Kp is an equivalence.
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Bénabou-Roubaud Theorem

Hypotheses of the Bénabou-Roubaud Theorem
1 C with pullbacks;
2 F : Cop → CAT;
3 F(q)! a F(q), for all q;
4 F satisfies the so called Beck-Chevalley condition.
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Bénabou-Roubaud Theorem

Bénabou-Roubaud Theorem
1 C with pullbacks;
2 F : Cop → CAT;
3 F(q)! a F(q), for all q;
4 F satisfies the so called Beck-Chevalley condition.

F(B)
F(p) //

Kp %%

F(E) = Fp(1)

Desc (Fp)

77
coincides with the

Eilenberg-Moore factorization of the right adjoint functor F(p).
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Corollary

Hypotheses of the Bénabou-Roubaud Theorem
1 C with pullbacks;
2 F : Cop → CAT;
3 F(q)! a F(q), for all q;
4 Beck-Chevalley condition.

Corollary
p of effective F-descent if and only if F(p) is monadic.



Descent category Descent theory Monadicity via descent

Corollary

Hypotheses of the Bénabou-Roubaud Theorem
1 C with pullbacks;
2 F : Cop → CAT;
3 F(q)! a F(q), for all q;
4 Beck-Chevalley condition.

Corollary
p of effective F-descent if and only if F(p) is monadic.

Observation
It characterizes descent via monadicity
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Corollary

Hypotheses of the Bénabou-Roubaud Theorem
1 C with pullbacks;
2 F : Cop → CAT;
3 F(q)! a F(q), for all q;
4 Beck-Chevalley condition.

Corollary
p of effective F-descent if and only if F(p) is monadic.

Observation
It characterizes descent via monadicity : the problem of descent
reduces to the problem of monadicity under the hypothesis of
the Beck-Chevalley condition.
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Basic (Counter)example

2 is the category 0 u−→ 1
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Basic (Counter)example

2 is the category 0 u−→ 1

F : 2op → Cat

Facts

F(0)
F(u) //

F(u) ''

F(1) = Fp(1)

F(1) ' Desc (Fu)

id

55
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F : 2op → Cat

Facts

F(0)
F(u) //

F(u) ''
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F(1) ' Desc (Fu)

id

55

u of effective F-descent⇐⇒ F(u) equivalence;
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Basic (Counter)example

F : 2op → Cat

Facts

F(0)
F(u) //

F(u) ''

F(1) = Fp(1)

F(1) ' Desc (Fu)

id

55

u of effective F-descent⇐⇒ F(u) equivalence;

Therefore if G is monadic (and not an equivalence), defining
F(u) = G, u is not of effective F-descent but F(u) is monadic.
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Basic (Counter)example

F : 2op → Cat

Facts

F(0)
F(u) //

F(u) ''

F(1) = Fp(1)

F(1) ' Desc (Fu)

id

55

u of effective F-descent⇐⇒ F(u) equivalence;
F satisfies Beck-Chevalley⇐⇒ F(u)! a F(u) and F(u)!
fully faithful.

Therefore if G is monadic (and not an equivalence), defining
F(u) = G, u is not of effective F-descent but F(u) is monadic.
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More structured examples

Non-effective of descent morphisms inducing monadic
functors

[Manuela Sobral 2004]
Descent for discrete (co)fibrations.

[Margarida Melo 2004]
Master’s thesis: Monadicidade e descida - da fibração
básica à fibração dos pontos.
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Higher cokernel

G : A→ B
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Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

[Ross Street 2004]
Categorical and combinatorial aspects of descent theory.

[Steve Lack 2002]
Codescent objects and coherence
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Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

Opcomma category

B ↑G B

[Ross Street 1974]
Elementary cosmoi. I.
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Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

Opcomma category

B ↑G B

A
G
$$

G
zz

B
i1 ##

α
=⇒ B

i0{{B ↑G B



Descent category Descent theory Monadicity via descent

Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

Opcomma category

B ↑G B

A
G
$$

G
zz

B
i1 ##

α
=⇒ B

i0{{B ↑G B

A

G
��

(domain,IdA)
""

A

G
��

(codomain,IdA)
||

B 2× A B
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Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

B
i0 //

i1

// B ↑G B
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Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

B
i0 //

i1

// B ↑G BSoo

A

G
��

(domain,IdA)
""

A

G
��

(codomain,IdA)
||

B 2× A B
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Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

B
i0 //

i1

// B ↑G BSoo

A

G
��

(domain,IdA)
""

A

G
��

(codomain,IdA)
||

B

IdB
((

2× A

G ◦ projA
��

B

IdB
vvB
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Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

B
i0 //

i1

// B ↑G BSoo
I0 //

I2

// i0 tB i1

B ↑G B
I0

%%
B

i1

<<

i0 ""

i0 tB i1

B ↑G B
I2

99
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Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

B
i0 //

i1

// B ↑G BSoo
I0 //

I2

// B ↑G B ↑G B

B ↑G B
I0

''
B

i1

<<

i0 ""

B ↑G B ↑G B

B ↑G B
I2

77
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Higher cokernel

The higher cokernel HG : ∆3 → Cat of G : A→ B.

B
i0 //

i1

// B ↑G BSoo
I0 //
I1 //

I2

// B ↑G B ↑G B

A
G

xx
G

&&

A

G

��

G

��

G
��

B
i1

&&

α
=⇒ B

i0
xx

= B

= I0 i1

��

I2 i0

��

B ↑G B
I1
��

B
IdI2
∗α

====⇒

I2i1
&&

B
IdI0
∗α

====⇒

I0i0
xx

B ↑G B ↑G B B ↑G B ↑G B
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(Descent) factorization of functors

HG : ∆3 → Cat

B
i0 //

i1

// B ↑G BSoo
I0 //
I1 //

I2

// B ↑G B ↑G B

A
G

xx
G

&&

A

G

��

G

��

G
��

B
i1

&&

α
=⇒ B

i0
xx

= B

= I0 i1

��

I2 i0

��

B ↑G B
I1
��

B
IdI2
∗α

====⇒

I2i1
&&

B
IdI0
∗α

====⇒

I0i0
xx

B ↑G B ↑G B B ↑G B ↑G B
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(Descent) factorization of functors

HG : ∆3 → Cat

B
i0 //

i1

// B ↑G BSoo
I0 //
I1 //

I2

// B ↑G B ↑G B

A
G
$$

G
zzB
i1 $$

α
=⇒ B

i0zzB ↑G B

satisfies the associativ. and ident. eq’s w.r.t. HG.
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(Descent) factorization of functors

HG : ∆3 → Cat

B
i0 //

i1

// B ↑G BSoo
I0 //
I1 //

I2

// B ↑G B ↑G B

A
G
$$

G
zzB
i1 $$

α
=⇒ B

i0zzB ↑G B

satisfies the associativ. and ident. eq’s w.r.t. HG.

A

Kα

##

G // B = HG(1)

Desc (HG)

77
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(Descent) factorization of functors

HG : ∆3 → Cat

B
i0 //

i1

// B ↑G BSoo
I0 //
I1 //

I2

// B ↑G B ↑G B

A

KG:=Kα
$$

G // B

Desc (HG)

::

(factorization (of any functor) induced by the higher cokernel)
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Contributions on monadicity via descent

G : A→ B

HG : ∆3 → Cat

A

KG
$$

G // B

Desc (HG)

::

(factorization of G induced by the higher cokernel HG)
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Contributions on monadicity via descent

G : A→ B
HG : ∆3 → Cat

A

KG
$$

G // B

Desc (HG)

::

(factorization of G induced by the higher cokernel HG)

Theorem A

If G has a left adjoint, then the factorization above coincides with
the Eilenberg-Moore factorization of G;

If G has a right adjoint, then the factorization above coincides
with the factorization of G through the coalgebras.
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Contributions on monadicity via descent

A

KG
##

G // B

Desc (HG)

;; (factorization of G induced by the higher cokernelHG )

Theorem A

If G has a left adjoint, then the factorization above coincides with
the Eilenberg-Moore factorization of G;

If G has a right adjoint, then the factorization above coincides
with the factorization of G through the coalgebras.

Corollary A.1

If G has a left adjoint: then G is monadic if and only if KG is an
equivalence (G is effective faithful functor).
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Contributions on monadicity via descent

Theorem A

If G has a left adjoint, then the factorization above coincides with
the Eilenberg-Moore factorization of G;

If G has a right adjoint, then the factorization above coincides
with the factorization of G through the coalgebras.

Corollary A.1

If G has a left adjoint: then G is monadic if and only if KG is an
equivalence (G is effective faithful functor).

Theorem B
For any pseudofunctor A : ∆3 → Cat,

Desc (A)→ A(1)

creates absolute limits and colimits.
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Contributions on monadicity via descent

Theorem A
If G has a left adjoint, then the factorization above coincides with the
Eilenberg-Moore factorization of G;

Corollary A.1

If G has a left adjoint: then G is monadic if and only if KG is an
equivalence (G is effective faithful functor).

Theorem B
If G is the composition of a functor that forgets descent data w.r.t.
some A : ∆3 → Cat with any equivalence, then it creates absolute
limits and colimits.
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Contributions on monadicity via descent

Theorem A
If G has a left adjoint, then the (descent) factorization induced by the
higher cokernel coincides with the Eilenberg-Moore factorization of G.

Corollary A.1

If G has a left adjoint: then G is monadic if and only if KG is an
equivalence (G is effective faithful functor).

Theorem B
If G is the composition of a functor that forgets descent data with any
equivalence, then it creates absolute limits and colimits.

Corollary B.1

A right adjoint functor G is monadic if and only if it is a functor that
forgets descent data (w.r.t. some A).
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Final observation

Corollary B.1
A right adjoint functor G is monadic if and only if it is a functor
that forgets descent data (w.r.t. some A).
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Final observation

Corollary B.1
A right adjoint functor G is monadic if and only if it is a functor
that forgets descent data (w.r.t. some A).

1 C with pullbacks;
2 F : Cop → CAT.
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Final observation

Corollary B.1
A right adjoint functor G is monadic if and only if it is a functor
that forgets descent data (w.r.t. some A).

1 C with pullbacks;
2 F : Cop → CAT.

Corollary B.1.1
If p is of effective F-descent and F(p) has a left adjoint, then
F(p) is monadic.
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Thank you!
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