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The classical Kan–Quillen model structure

Theorem
The category of simplicial sets carries a proper cartesian model structure
where

weak equivalences are the weak homotopy equivalences,
cofibrations are the monomorphisms,
fibrations are the Kan fibrations.

A constructive version of the model structure would be useful in
study of models of Homotopy Type Theory;
understanding homotopy theory of simplicial sheaves.
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The constructive Kan–Quillen model structure

Theorem (CZF)
The category of simplicial sets carries a proper cartesian model structure
where

weak equivalences are the weak homotopy equivalences,
cofibrations are the Reedy decidable inclusions,
fibrations are the Kan fibrations.

Proofs:
S. Henry, A constructive account of the Kan-Quillen model structure
and of Kan’s Ex∞ functor
N. Gambino, C. Sattler, K. Szumi lo,
The Constructive Kan–Quillen Model Structure: Two New Proofs
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Fibrations and cofibrations

If A→ B and C → D are cofibrations, then so is their pushout product.
If one of the is trivial, then so is the pushout product.

A × C B × C

A ×D ●

B ×D
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Weak homotopy equivalences

A map f ∶X → Y is a weak homotopy equivalence if

(X and Y cofibrant Kan complexes) it is a homotopy equivalence;

(X and Y Kan complexes) it has a strong cofibrant replacement that
is a weak homotopy equivalence;

(X and Y cofibrant) if f ∗∶K Y
→ K X is

a weak homotopy equivalence for every Kan complex K ;

(X and Y arbitrary) it has a strong cofibrant replacement that
is a weak homotopy equivalence.
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Fibration category of Kan complexes

Theorem
The category of Kan complexes is a fibration category, i.e.

It has a terminal object and all objects are fibrant.
Pullbacks along fibrations exist and (acyclic) fibrations are
stable under pullback.
Every morphism factors as a weak equivalence followed by
a fibration.
Weak equivalences satisfy the 2-out-of-6 property.
It has products and (acyclic) fibrations are stable under products.
It has limits of towers of fibrations and (acyclic) fibrations are
stable under such limits.

For cofibrant Kan complexes:
use the pushout product property to strictify inverses to
acyclic fibrations and show that they are trivial.

X̃ X

Ỹ Y
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Cofibration category of cofibrant simplicial sets

Theorem
The category of cofibrant simplicial sets is a fibration category, i.e.

It has an initial object and all objects are cofibrant.
Pushouts along cofibrations exist and (acyclic) cofibrations are
stable under pushout.
Every morphism factors as a cofibration followed by
a weak equivalence.
Weak equivalences satisfy the 2-out-of-6 property.
It has coproducts and (acyclic) cofibrations are
stable under coproducts.
It has colimits of sequences of cofibrations and (acyclic) cofibrations
are stable under such colimits.

Dualise by applying (Ð)
K for all Kan complexes K .
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Diagonals of bisimplicial sets

Proposition
If X → Y is a map between cofibrant bisimiplicial sets such that Xk → Yk
is a weak homotopy equivalence for all k, then the induced map
diag X → diag Y is also a weak homotopy equivalence.

LkX ×∆[k] ∪Xk × ∂∆[k] diag Skk−1 X

Xk ×∆[k] diag Skk X

LkY ×∆[k] ∪Yk × ∂∆[k] diag Skk−1 Y

Yk ×∆[k] diag Skk Y
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Kan’s Ex∞ functor

Ex X = sSet(Sd∆[Ð], X)

Ex∞ X = colim(X → Ex X → Ex2 X → . . .)

Proposition

Ex∞ preserves finite limits.
Ex∞ preserves Kan fibrations between cofibrant objects.
If X is cofibrant, then Ex∞ X is a Kan complex.
If X is cofibrant, then X → Ex∞ X is a weak homotopy equivalence.

The last statement is proven by argument of Latch–Thomason–Wilson.
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Kan’s Ex∞ functor

sSet(∆[m] ×∆[0], X) sSet(∆[m] ×∆[n], X)

sSet(Sd ∆[m] ×∆[0], X) sSet(Sd ∆[m] ×∆[n], X)

● X ∆[m]

● X Sd ∆[m]

≃

X ∆[0] X ∆[n]

Ex(X ∆[0]
) Ex(X ∆[n]

)

≃

≃

X ●

Ex X ●

∼

∼

∼



10/11

Kan’s Ex∞ functor

sSet(∆[m] ×∆[0], X) sSet(∆[m] ×∆[n], X)

sSet(Sd ∆[m] ×∆[0], X) sSet(Sd ∆[m] ×∆[n], X)

● X ∆[m]

● X Sd ∆[m]

≃

X ∆[0] X ∆[n]

Ex(X ∆[0]
) Ex(X ∆[n]

)

≃

≃

X ●

Ex X ●

∼

∼

∼



10/11

Kan’s Ex∞ functor

sSet(∆[m] ×∆[0], X) sSet(∆[m] ×∆[n], X)

sSet(Sd ∆[m] ×∆[0], X) sSet(Sd ∆[m] ×∆[n], X)

● X ∆[m]

● X Sd ∆[m]

≃

X ∆[0] X ∆[n]

Ex(X ∆[0]
) Ex(X ∆[n]

)

≃

≃

X ●

Ex X ●

∼

∼

∼



10/11

Kan’s Ex∞ functor

sSet(∆[m] ×∆[0], X) sSet(∆[m] ×∆[n], X)

sSet(Sd ∆[m] ×∆[0], X) sSet(Sd ∆[m] ×∆[n], X)

● X ∆[m]

● X Sd ∆[m]

≃

X ∆[0] X ∆[n]

Ex(X ∆[0]
) Ex(X ∆[n]

)

≃

≃

X ●

Ex X ●

∼

∼

∼



11/11

Trivial fibrations vs. acyclic fibrations

Let p∶X → Y be a Kan fibration.

If p is trivial, then it is acyclic – fairly easy.

If p is acyclic and X and Y are cofibrant, use Ex∞:

Fy X

Ex∞ Fy Ex∞ X

∆[0] Y

Ex∞ ∆[0] Ex∞ Y

∼ ∼

∼ ∼

For general X and Y , use the cancellation trick.
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