The Constructive Kan–Quillen Model Structure

Karol Szumiło

University of Leeds

Category Theory 2019

Theorem

The category of simplicial sets carries a proper cartesian model structure where

- weak equivalences are the weak homotopy equivalences,
- cofibrations are the monomorphisms,
- fibrations are the Kan fibrations.

Theorem

The category of simplicial sets carries a proper cartesian model structure where

- weak equivalences are the weak homotopy equivalences,
- cofibrations are the monomorphisms,
- fibrations are the Kan fibrations.
- A constructive version of the model structure would be useful in
 - study of models of Homotopy Type Theory;
 - understanding homotopy theory of simplicial sheaves.

Theorem (CZF)

The category of simplicial sets carries a proper cartesian model structure where

- weak equivalences are the weak homotopy equivalences,
- cofibrations are the Reedy decidable inclusions,
- fibrations are the Kan fibrations.

Theorem (CZF)

The category of simplicial sets carries a proper cartesian model structure where

- weak equivalences are the weak homotopy equivalences,
- cofibrations are the Reedy decidable inclusions,
- fibrations are the Kan fibrations.

Proofs:

- S. Henry, A constructive account of the Kan-Quillen model structure and of Kan's Ex[∞] functor
- N. Gambino, C. Sattler, K. Szumiło, The Constructive Kan–Quillen Model Structure: Two New Proofs

If $A \rightarrow B$ and $C \rightarrow D$ are cofibrations, then so is their *pushout product*. If one of the is trivial, then so is the pushout product.

(X and Y cofibrant Kan complexes) it is a homotopy equivalence;

(X and Y cofibrant Kan complexes) it is a homotopy equivalence;

(X and Y Kan complexes) it has a *strong* cofibrant replacement that is a weak homotopy equivalence;

(X and Y cofibrant Kan complexes) it is a homotopy equivalence;

(X and Y Kan complexes) it has a *strong* cofibrant replacement that is a weak homotopy equivalence;

(X and Y cofibrant) if $f^*: K^Y \to K^X$ is a weak homotopy equivalence for every Kan complex K;

(X and Y cofibrant Kan complexes) it is a homotopy equivalence;

(X and Y Kan complexes) it has a *strong* cofibrant replacement that is a weak homotopy equivalence;

(X and Y cofibrant) if $f^*: K^Y \to K^X$ is a weak homotopy equivalence for every Kan complex K;

(X and Y arbitrary) it has a *strong* cofibrant replacement that is a weak homotopy equivalence.

Theorem

The category of Kan complexes is a fibration category, i.e.

- It has a terminal object and all objects are fibrant.
- Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- Every morphism factors as a weak equivalence followed by a fibration.
- Weak equivalences satisfy the 2-out-of-6 property.
- It has products and (acyclic) fibrations are stable under products.
- It has limits of towers of fibrations and (acyclic) fibrations are stable under such limits.

Theorem

The category of Kan complexes is a fibration category, i.e.

- It has a terminal object and all objects are fibrant.
- Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- Every morphism factors as a weak equivalence followed by a fibration.
- Weak equivalences satisfy the 2-out-of-6 property.
- It has products and (acyclic) fibrations are stable under products.
- It has limits of towers of fibrations and (acyclic) fibrations are stable under such limits.

For cofibrant Kan complexes:

Theorem

The category of Kan complexes is a fibration category, i.e.

- It has a terminal object and all objects are fibrant.
- Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- Every morphism factors as a weak equivalence followed by a fibration.
- Weak equivalences satisfy the 2-out-of-6 property.
- It has products and (acyclic) fibrations are stable under products.
- It has limits of towers of fibrations and (acyclic) fibrations are stable under such limits.

For cofibrant Kan complexes:

Theorem

The category of Kan complexes is a fibration category, i.e.

- It has a terminal object and all objects are fibrant.
- Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- Every morphism factors as a weak equivalence followed by a fibration.
- Weak equivalences satisfy the 2-out-of-6 property.
- It has products and (acyclic) fibrations are stable under products.
- It has limits of towers of fibrations and (acyclic) fibrations are stable under such limits.

For cofibrant Kan complexes:

Theorem

The category of Kan complexes is a fibration category, i.e.

- It has a terminal object and all objects are fibrant.
- Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- Every morphism factors as a weak equivalence followed by a fibration.
- Weak equivalences satisfy the 2-out-of-6 property.
- It has products and (acyclic) fibrations are stable under products.
- It has limits of towers of fibrations and (acyclic) fibrations are stable under such limits.

For cofibrant Kan complexes:

Theorem

The category of Kan complexes is a fibration category, i.e.

- It has a terminal object and all objects are fibrant.
- Pullbacks along fibrations exist and (acyclic) fibrations are stable under pullback.
- Every morphism factors as a weak equivalence followed by a fibration.
- Weak equivalences satisfy the 2-out-of-6 property.
- It has products and (acyclic) fibrations are stable under products.
- It has limits of towers of fibrations and (acyclic) fibrations are stable under such limits.

For cofibrant Kan complexes:

Cofibration category of cofibrant simplicial sets

Theorem

The category of cofibrant simplicial sets is a fibration category, i.e.

- It has an initial object and all objects are cofibrant.
- Pushouts along cofibrations exist and (acyclic) cofibrations are stable under pushout.
- Every morphism factors as a cofibration followed by a weak equivalence.
- Weak equivalences satisfy the 2-out-of-6 property.
- It has coproducts and (acyclic) cofibrations are stable under coproducts.
- It has colimits of sequences of cofibrations and (acyclic) cofibrations are stable under such colimits.

Cofibration category of cofibrant simplicial sets

Theorem

The category of cofibrant simplicial sets is a fibration category, i.e.

- It has an initial object and all objects are cofibrant.
- Pushouts along cofibrations exist and (acyclic) cofibrations are stable under pushout.
- Every morphism factors as a cofibration followed by a weak equivalence.
- Weak equivalences satisfy the 2-out-of-6 property.
- It has coproducts and (acyclic) cofibrations are stable under coproducts.
- It has colimits of sequences of cofibrations and (acyclic) cofibrations are stable under such colimits.

Dualise by applying $(-)^{K}$ for all Kan complexes K.

Diagonals of bisimplicial sets

Proposition

If $X \to Y$ is a map between cofibrant bisimiplicial sets such that $X_k \to Y_k$ is a weak homotopy equivalence for all k, then the induced map diag $X \to$ diag Y is also a weak homotopy equivalence.

Diagonals of bisimplicial sets

Proposition

If $X \to Y$ is a map between cofibrant bisimiplicial sets such that $X_k \to Y_k$ is a weak homotopy equivalence for all k, then the induced map diag $X \to$ diag Y is also a weak homotopy equivalence.

Diagonals of bisimplicial sets

Proposition

If $X \to Y$ is a map between cofibrant bisimiplicial sets such that $X_k \to Y_k$ is a weak homotopy equivalence for all k, then the induced map diag $X \to$ diag Y is also a weak homotopy equivalence.

Kan's Ex^∞ functor

$$\operatorname{Ex} X = \operatorname{sSet}(\operatorname{Sd}\Delta[-], X)$$

Kan's Ex^∞ functor

$$Ex X = sSet(Sd\Delta[-], X)$$
$$Ex^{\infty} X = colim(X \to Ex X \to Ex^{2} X \to ...)$$

$$\mathsf{Ex} X = \mathsf{sSet}(\mathrm{Sd}\Delta[-], X)$$
$$\mathsf{Ex}^{\infty} X = \mathsf{colim}(X \to \mathsf{Ex} X \to \mathsf{Ex}^2 X \to \dots)$$

Proposition

- Ex^{∞} preserves finite limits.
- Ex[∞] preserves Kan fibrations between cofibrant objects.
- If X is cofibrant, then $Ex^{\infty} X$ is a Kan complex.
- If X is cofibrant, then $X \to Ex^{\infty} X$ is a weak homotopy equivalence.

$$\mathsf{Ex} X = \mathsf{sSet}(\mathrm{Sd}\Delta[-], X)$$
$$\mathsf{Ex}^{\infty} X = \mathsf{colim}(X \to \mathsf{Ex} X \to \mathsf{Ex}^2 X \to \dots)$$

Proposition

- Ex^{∞} preserves finite limits.
- Ex[∞] preserves Kan fibrations between cofibrant objects.
- If X is cofibrant, then $Ex^{\infty} X$ is a Kan complex.
- If X is cofibrant, then $X \to Ex^{\infty} X$ is a weak homotopy equivalence.

The last statement is proven by argument of Latch-Thomason-Wilson.

Let $p: X \to Y$ be a Kan fibration.

Let $p: X \to Y$ be a Kan fibration.

If p is trivial, then it is acyclic – fairly easy.

Let $p: X \to Y$ be a Kan fibration.

If p is trivial, then it is acyclic – fairly easy.

If p is acyclic and X and Y are cofibrant, use Ex^{∞} :

Let $p: X \to Y$ be a Kan fibration.

If p is trivial, then it is acyclic – fairly easy.

If p is acyclic and X and Y are cofibrant, use Ex^{∞} :

For general X and Y, use the cancellation trick.