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A constructive version of the model structure would be useful in
m study of models of Homotopy Type Theory;

m understanding homotopy theory of simplicial sheaves.
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The constructive Kan—Quillen model structure

Theorem (CZF)

The category of simplicial sets carries a proper cartesian model structure
where

m weak equivalences are the weak homotopy equivalences,
m cofibrations are the Reedy decidable inclusions,

m fibrations are the Kan fibrations.

Proofs:

m S. Henry, A constructive account of the Kan-Quillen model structure
and of Kan's Ex™ functor

m N. Gambino, C. Sattler, K. Szumito,
The Constructive Kan—Quillen Model Structure: Two New Proofs



Fibrations and cofibrations

If A— B and C — D are cofibrations, then so is their pushout product.
If one of the is trivial, then so is the pushout product.
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Weak homotopy equivalences

A map f: X = Y is a weak homotopy equivalence if
(X and Y cofibrant Kan complexes) it is a homotopy equivalence;

(X and Y Kan complexes) it has a strong cofibrant replacement that
is a weak homotopy equivalence;

(X and Y cofibrant) if F*:KY - KX is
a weak homotopy equivalence for every Kan complex K;

(X and Y arbitrary) it has a strong cofibrant replacement that
is a weak homotopy equivalence.



Fibration category of Kan complexes

Theorem
The category of Kan complexes is a fibration category, i.e.

It has a terminal object and all objects are fibrant.

Pullbacks along fibrations exist and (acyclic) fibrations are
stable under pullback.

Every morphism factors as a weak equivalence followed by
a fibration.

Weak equivalences satisfy the 2-out-of-6 property.
It has products and (acyclic) fibrations are stable under products.

It has limits of towers of fibrations and (acyclic) fibrations are
stable under such limits.
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Fibration category of Kan complexes

Theorem
The category of Kan complexes is a fibration category, i.e.

For cofibrant Kan complexes:
use the pushout product property to strictify inverses to
acyclic fibrations and show that they are trivial.

It has a terminal object and all objects are fibrant.

Pullbacks along fibrations exist and (acyclic) fibrations are
stable under pullback.

Every morphism factors as a weak equivalence followed by
a fibration.

Weak equivalences satisfy the 2-out-of-6 property.

It has products and (acyclic) fibrations are stable under products.

It has limits of towers of fibrations and (acyclic) fibrations are

stable under such limits.
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Cofibration category of cofibrant simplicial sets

Theorem
The category of cofibrant simplicial sets is a fibration category, i.e.

It has an initial object and all objects are cofibrant.

Pushouts along cofibrations exist and (acyclic) cofibrations are
stable under pushout.

Every morphism factors as a cofibration followed by
a weak equivalence.

Weak equivalences satisfy the 2-out-of-6 property.
It has coproducts and (acyclic) cofibrations are
stable under coproducts.

It has colimits of sequences of cofibrations and (acyclic) cofibrations
are stable under such colimits.



Cofibration category of cofibrant simplicial sets

Theorem
The category of cofibrant simplicial sets is a fibration category, i.e.

It has an initial object and all objects are cofibrant.

Pushouts along cofibrations exist and (acyclic) cofibrations are
stable under pushout.

Every morphism factors as a cofibration followed by
a weak equivalence.

Weak equivalences satisfy the 2-out-of-6 property.
It has coproducts and (acyclic) cofibrations are
stable under coproducts.

It has colimits of sequences of cofibrations and (acyclic) cofibrations
are stable under such colimits.

Dualise by applying (—)¥ for all Kan complexes K.



Diagonals of bisimplicial sets

Proposition

If X - Y is a map between cofibrant bisimiplicial sets such that X, — Yy
is a weak homotopy equivalence for all k, then the induced map

diag X — diag Y is also a weak homotopy equivalence.
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Diagonals of bisimplicial sets

Proposition

If X - Y is a map between cofibrant bisimiplicial sets such that X, — Yy
is a weak homotopy equivalence for all k, then the induced map

diag X — diag Y is also a weak homotopy equivalence.

L X x A[k] U Xy x DA[K] diag Sk X

I N

Xic x A[k] diag Sk* X

LY x A[K]U Y x OA[K] |[—— diag Sk Y

I N

Yi x A[k] ————— diagSk* Y
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Kan's Ex® functor

Ex X = sSet(SAA[—], X)
Ex™ X = colim(X — ExX - Ex* X - ...)

Proposition

Ex™ preserves finite limits.

[
m Ex™ preserves Kan fibrations between cofibrant objects.
m /f X is cofibrant, then Ex™ X is a Kan complex.

|

If X is cofibrant, then X — Ex™ X is a weak homotopy equivalence.

The last statement is proven by argument of Latch—Thomason-Wilson.
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Kan's Ex® functor

sSet(A[m] x A[0], X)

sSet(A[m] x A[n], X)

|

sSet(Sd A[m] x A[0], X) sSet(Sd A[m] x A[n], X)

o —— xA[m] XA[0] — = xA[n]

|
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Kan's Ex® functor

sSet(A[m] x A[0], X)

sSet(A[m] x A[n], X)

|

sSet(Sd A[m] x A[0], X) sSet(Sd A[m] x A[n], X)

o —— xA[m] XA — = xA[n] X —" e

| W

o — xSdA[m] Ex(XA[O]) — Ex(XA[”]) ExXX —— ¢
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Trivial fibrations vs. acyclic fibrations

Let p: X - Y be a Kan fibration.
If p is trivial, then it is acyclic — fairly easy.

If p is acyclic and X and Y are cofibrant, use Ex™

N \

Ex* F, ————— Ex™

Fy

Ex™ A[0] Ex*Y

For general X and Y, use the cancellation trick.



