Relative Partial Combinatory Algebras over Heyting Categories

Jetze Zoethout

Category Theory, 8 July 2019

Jetze Zoethout

Relative PCAs over Heyting Categories

CT2019 1/21

2 PCAs over Heyting Categories

Background and Motivation

2 PCAs over Heyting Categories

4 Computational Density

< 行

A partial combinatory algebra (PCA) is a nonempty set A with a partial binary operation $A \times A \rightarrow A$: $(a, b) \mapsto ab$ for which there exist k, s $\in A$ such that:

A partial combinatory algebra (PCA) is a nonempty set A with a partial binary operation $A \times A \rightarrow A$: $(a, b) \mapsto ab$ for which there exist k, s $\in A$ such that:

(i)
$$kab = a;$$

(here
$$abc = (ab)c$$
)

- (ii) sab is always defined;
- (iii) if ac(bc) is defined, then sabc is defined and equal to ac(bc).

A partial combinatory algebra (PCA) is a nonempty set A with a partial binary operation $A \times A \rightarrow A$: $(a, b) \mapsto ab$ for which there exist k, s $\in A$ such that:

(i)
$$kab = a;$$

(here
$$abc = (ab)c$$
)

- (ii) sab is always defined;
- (iii) if ac(bc) is defined, then sabc is defined and equal to ac(bc).

Property

If $t(\vec{x}, y)$ is a term, then there exists an $r \in A$ such that:

A partial combinatory algebra (PCA) is a nonempty set A with a partial binary operation $A \times A \rightarrow A$: $(a, b) \mapsto ab$ for which there exist k, s $\in A$ such that:

(i)
$$kab = a;$$

(here
$$abc = (ab)c$$
)

- (ii) sab is always defined;
- (iii) if ac(bc) is defined, then sabc is defined and equal to ac(bc).

Property

If $t(\vec{x}, y)$ is a term, then there exists an $r \in A$ such that:

- (i) $r\vec{a}$ is defined;
- (ii) if $t(\vec{a}, b)$ is defined, then $r\vec{a}b$ is defined and equal to $t(\vec{a}, b)$.

A *relative PCA* is a pair (A, C) where A is a PCA, and $C \subseteq A$ closed under the application from A, such that there exist $k, s \in C$ witnessing the fact that A is a PCA.

A relative PCA is a pair (A, C) where A is a PCA, and $C \subseteq A$ closed under the application from A, such that there exist $k, s \in C$ witnessing the fact that A is a PCA.

We view the elements of C as *computable* elements acting on possibly *non-computable* data.

Kleene's first model \mathcal{K}_1 is \mathbb{N} with $mn = \varphi_m(n)$.

Image: Image:

-

Kleene's first model \mathcal{K}_1 is \mathbb{N} with $mn = \varphi_m(n)$.

Example

Scott's graph model is a total PCA with underlying set $\mathcal{P}\mathbb{N}$, such that a function $(\mathcal{P}\mathbb{N})^n \to \mathcal{P}\mathbb{N}$ is computable if and only if it is Scott continuous.

Kleene's first model \mathcal{K}_1 is \mathbb{N} with $mn = \varphi_m(n)$.

Example

Scott's graph model is a total PCA with underlying set $\mathcal{P}\mathbb{N}$, such that a function $(\mathcal{P}\mathbb{N})^n \to \mathcal{P}\mathbb{N}$ is computable if and only if it is Scott continuous.

 $(\mathcal{PN}, (\mathcal{PN})_{r.e.})$ is a relative PCA.

The category Asm(A, C):

(i) has as objects pairs $X = (|X|, E_X)$, where |X| is a set and $E_X \subseteq |X| \times A$ satisfies: for all $x \in |X|$, there is an $a \in A$ with $E_X(x, a)$.

The category Asm(A, C):

- (i) has as objects pairs $X = (|X|, E_X)$, where |X| is a set and $E_X \subseteq |X| \times A$ satisfies: for all $x \in |X|$, there is an $a \in A$ with $E_X(x, a)$.
- (ii) arrows $X \to Y$ are functions $|X| \to |Y|$ for which there exists a *tracker* $r \in C$ such that: if $E_X(x, a)$, then ra is defined and $E_Y(f(x), ra)$.

The category Asm(A, C):

- (i) has as objects pairs $X = (|X|, E_X)$, where |X| is a set and $E_X \subseteq |X| \times A$ satisfies: for all $x \in |X|$, there is an $a \in A$ with $E_X(x, a)$.
- (ii) arrows $X \to Y$ are functions $|X| \to |Y|$ for which there exists a *tracker* $r \in C$ such that: if $E_X(x, a)$, then ra is defined and $E_Y(f(x), ra)$.

The category Asm(A) is a quasitopos.

What does a category of the form Asm(A)/I or Asm(A, C)/I look like?

What does a category of the form Asm(A)/I or Asm(A, C)/I look like?

1. Are these slice categories again realizability categories of some kind?

What does a category of the form Asm(A)/I or Asm(A, C)/I look like?

- 1. Are these slice categories again realizability categories of some kind?
- 2. Can we find a convenient description of these slice categories?

What does a category of the form Asm(A)/I or Asm(A, C)/I look like?

- 1. Are these slice categories again realizability categories of some kind?
- 2. Can we find a convenient description of these slice categories?

There is an adjunction

Set
$$\stackrel{\Gamma}{\longleftrightarrow}$$
 Asm (A, C)

with $\Gamma \dashv \nabla$.

4 Computational Density

< 行

Let ${\mathcal H}$ be a locally small Heyting category.

< □ > < 同 > < 回 > < Ξ > < Ξ

HPCAs

Let ${\mathcal H}$ be a locally small Heyting category.

Definition (Stekelenburg)

An *HPCA* over \mathcal{H} is a pair (A, ϕ) , where A is an inhabited object of \mathcal{H} with a binary partial map $A \times A \rightarrow A$ and ϕ (the *filter*) is a set of inhabited subobjects of A such that:

HPCAs

Let ${\mathcal H}$ be a locally small Heyting category.

Definition (Stekelenburg)

An *HPCA* over \mathcal{H} is a pair (A, ϕ) , where A is an inhabited object of \mathcal{H} with a binary partial map $A \times A \rightarrow A$ and ϕ (the *filter*) is a set of inhabited subobjects of A such that:

- (i) ϕ is upwards closed;
- (ii) ϕ is closed under application;

Let ${\mathcal H}$ be a locally small Heyting category.

Definition (Stekelenburg)

An *HPCA* over \mathcal{H} is a pair (A, ϕ) , where A is an inhabited object of \mathcal{H} with a binary partial map $A \times A \rightarrow A$ and ϕ (the *filter*) is a set of inhabited subobjects of A such that:

- (i) ϕ is upwards closed;
- (ii) ϕ is closed under application;

(iii) for every term $t(\vec{x}, y)$, there exists a $U \in \phi$ such that

 $\forall r \in U \forall \vec{a} \in A(r\vec{a} \downarrow \land \forall b \in A(t(\vec{a}, b) \downarrow \rightarrow r\vec{a}b \downarrow \land (r\vec{a}b = t(\vec{a}, b)))).$

is valid in \mathcal{H} .

Let ${\mathcal H}$ be a locally small Heyting category.

Definition (Stekelenburg)

An *HPCA* over \mathcal{H} is a pair (A, ϕ) , where A is an inhabited object of \mathcal{H} with a binary partial map $A \times A \rightarrow A$ and ϕ (the *filter*) is a set of inhabited subobjects of A such that:

- (i) ϕ is upwards closed;
- (ii) ϕ is closed under application;

(iii) for every term $t(\vec{x}, y)$, there exists a $U \in \phi$ such that

 $\forall r \in U \forall \vec{a} \in A(r\vec{a} \downarrow \land \forall b \in A(t(\vec{a}, b) \downarrow \rightarrow r\vec{a}b \downarrow \land (r\vec{a}b = t(\vec{a}, b)))).$

is valid in \mathcal{H} .

There is also a notion of *morphism* between HPCAs over \mathcal{H} .

Proposition (Z)

If (A, ϕ) is an HPCA over \mathcal{H} and $p \colon \mathcal{H} \to \mathcal{G}$ is a Heyting functor, then

 $p^*(A,\phi) := (p(A), \langle p(\phi) \rangle)$

is an HPCA over \mathcal{G} ;

∃ ▶ ∢ ∃

Proposition (Z)

If (A, ϕ) is an HPCA over \mathcal{H} and $p \colon \mathcal{H} \to \mathcal{G}$ is a Heyting functor, then

$$p^*(A,\phi) := (p(A), \langle p(\phi) \rangle)$$

is an HPCA over \mathcal{G} ; and this assignment is functorial in both (A, ϕ) and \mathcal{H} .

Proposition (Z)

If (A, ϕ) is an HPCA over \mathcal{H} and $p \colon \mathcal{H} \to \mathcal{G}$ is a Heyting functor, then

$$p^*(A,\phi) := (p(A), \langle p(\phi) \rangle)$$

is an HPCA over \mathcal{G} ; and this assignment is functorial in both (A, ϕ) and \mathcal{H} .

We get a category HPCA:

Proposition (Z)

If (A, ϕ) is an HPCA over \mathcal{H} and $p \colon \mathcal{H} \to \mathcal{G}$ is a Heyting functor, then

$$p^*(A,\phi) := (p(A), \langle p(\phi) \rangle)$$

is an HPCA over \mathcal{G} ; and this assignment is functorial in both (A, ϕ) and \mathcal{H} .

We get a category HPCA:

$$\begin{array}{ccc} (A,\phi) & p^*(A,\phi) \\ & \downarrow^f \\ & (B,\psi) \end{array}$$
$$\mathcal{H} \xrightarrow{p} & \mathcal{G} \end{array}$$

Proposition (Z)

If (A, ϕ) is an HPCA over \mathcal{H} and $p \colon \mathcal{H} \to \mathcal{G}$ is a Heyting functor, then

$$p^*(A,\phi) := (p(A), \langle p(\phi) \rangle)$$

is an HPCA over \mathcal{G} ; and this assignment is functorial in both (A, ϕ) and \mathcal{H} .

We get a category HPCA:

$$\mathcal{H} \xrightarrow{p} \mathcal{G}$$

The pair (p, f) is called an *applicative morphism*.

Jetze Zoethout

Proposition (Z)

If (A, ϕ) is an HPCA over \mathcal{H} and $p \colon \mathcal{H} \to \mathcal{G}$ is a Heyting functor, then

$$p^*(A,\phi) := (p(A), \langle p(\phi) \rangle)$$

is an HPCA over \mathcal{G} ; and this assignment is functorial in both (A, ϕ) and \mathcal{H} .

We get a category HPCA:

$$\mathcal{H} \xrightarrow{p} \mathcal{G}$$

The pair (p, f) is called an *applicative morphism*. The category HPCA has small products.

Jetze Zoethout

Relative PCAs over Heyting Categories

CT2019 11/21

The category $Asm(A, \phi)$:

(i) has as objects pairs $X = (|X|, E_X)$, where $|X| \in \mathcal{H}$ and $E_X \subseteq |X| \times A$ is such that $\forall x \in |X| \exists a \in A(E_X(x, a))$ is valid in \mathcal{H} .

The category $Asm(A, \phi)$:

- (i) has as objects pairs $X = (|X|, E_X)$, where $|X| \in \mathcal{H}$ and $E_X \subseteq |X| \times A$ is such that $\forall x \in |X| \exists a \in A(E_X(x, a))$ is valid in \mathcal{H} .
- (ii) arrows $X \to Y$ are arrows $|X| \to |Y|$ of \mathcal{H} for which there exists $U \in \phi$ such that:

$$\forall r \in U \forall x \in |X| \forall a \in A(E_X(x, a) \rightarrow (ra \downarrow \land E_Y(f(x), ra)))$$

is valid in \mathcal{H} .

The category $Asm(A, \phi)$:

- (i) has as objects pairs $X = (|X|, E_X)$, where $|X| \in \mathcal{H}$ and $E_X \subseteq |X| \times A$ is such that $\forall x \in |X| \exists a \in A(E_X(x, a))$ is valid in \mathcal{H} .
- (ii) arrows $X \to Y$ are arrows $|X| \to |Y|$ of \mathcal{H} for which there exists $U \in \phi$ such that:

$$\forall r \in U \forall x \in |X| \forall a \in A(E_X(x, a) \rightarrow (ra \downarrow \land E_Y(f(x), ra)))$$

is valid in \mathcal{H} .

An applicative morphism (p, f): $(A, \phi) \rightarrow (B, \psi)$ also induces a functor $\operatorname{Asm}(p, f)$: $\operatorname{Asm}(A, \phi) \rightarrow \operatorname{Asm}(B, \psi)$.

▲ □ ▶ ▲ 三 ▶ ▲ 三

The category $Asm(A, \phi)$:

- (i) has as objects pairs $X = (|X|, E_X)$, where $|X| \in \mathcal{H}$ and $E_X \subseteq |X| \times A$ is such that $\forall x \in |X| \exists a \in A(E_X(x, a))$ is valid in \mathcal{H} .
- (ii) arrows $X \to Y$ are arrows $|X| \to |Y|$ of \mathcal{H} for which there exists $U \in \phi$ such that:

$$\forall r \in U \forall x \in |X| \forall a \in A(E_X(x, a) \rightarrow (ra \downarrow \land E_Y(f(x), ra)))$$

is valid in \mathcal{H} .

An applicative morphism $(p, f): (A, \phi) \to (B, \psi)$ also induces a functor $\operatorname{Asm}(p, f): \operatorname{Asm}(A, \phi) \to \operatorname{Asm}(B, \psi)$. The functor Asm preserves small products.

< ロト < 同ト < 三ト < 三

2 PCAs over Heyting Categories

4 Computational Density

< 円∛

Theorem (Stekelenburg)

Categories of the form $Asm(A, \phi)$ are closed under slicing.

Theorem (Stekelenburg)

Categories of the form $Asm(A, \phi)$ are closed under slicing.

Let $I \in Asm(A, \phi)$, and consider the Heyting functor $|I|^* \colon \mathcal{H} \to \mathcal{H}/|I|$.

Theorem (Stekelenburg)

Categories of the form $Asm(A, \phi)$ are closed under slicing.

Let $I \in \text{Asm}(A, \phi)$, and consider the Heyting functor $|I|^* : \mathcal{H} \to \mathcal{H}/|I|$.

Theorem (Z)

 $\operatorname{Asm}(A,\phi)/I$ is equivalent to $\operatorname{Asm}((A,\phi)/I)$, where

$$(A,\phi)/I:=(|I|^*(A),\langle |I|^*(\phi)\cup \{E_I\}\rangle).$$

(Observe that $E_I \subseteq |I| \times A = |I|^*(A)$.)

Consider $1 + 1 \in Asm(\mathcal{K}_1)$. Then $\mathcal{K}_1/1 + 1 \cong ((\mathcal{K}_1, \mathcal{K}_1), \phi_{\mathsf{max}})$, so

 $\operatorname{\mathsf{Asm}}(\mathcal{K}_1)/1 + 1 \simeq \operatorname{\mathsf{Asm}}(\mathcal{K}_1)^2.$

Consider $1 + 1 \in Asm(\mathcal{K}_1)$. Then $\mathcal{K}_1/1 + 1 \cong ((\mathcal{K}_1, \mathcal{K}_1), \phi_{max})$, so

$$\mathsf{Asm}(\mathcal{K}_1)/1 + 1 \simeq \mathsf{Asm}(\mathcal{K}_1)^2.$$

Example

Consider $\nabla 2 \in Asm(\mathcal{K}_1)$. Then $\mathcal{K}_1/\nabla 2 \cong ((\mathcal{K}_1, \mathcal{K}_1), \phi)$, where

 $\phi = \{(U_0, U_1) \subseteq (\mathbb{N}, \mathbb{N}) \mid U_0 \cap U_1 \neq \emptyset\} \neq \phi_{\max}.$

Consider $1 + 1 \in Asm(\mathcal{K}_1)$. Then $\mathcal{K}_1/1 + 1 \cong ((\mathcal{K}_1, \mathcal{K}_1), \phi_{max})$, so

$$\mathsf{Asm}(\mathcal{K}_1)/1 + 1 \simeq \mathsf{Asm}(\mathcal{K}_1)^2.$$

Example

Consider $\nabla 2 \in \mathsf{Asm}(\mathcal{K}_1)$. Then $\mathcal{K}_1/\nabla 2 \cong ((\mathcal{K}_1, \mathcal{K}_1), \phi)$, where

$$\phi = \{ (U_0, U_1) \subseteq (\mathbb{N}, \mathbb{N}) \mid U_0 \cap U_1 \neq \emptyset \} \neq \phi_{\max}.$$

An arrow (f_0, f_1) : $(X_0, X_1) \rightarrow (Y_0, Y_1)$ of $Asm(\mathcal{K}_1)^2$ belongs to $Asm((\mathcal{K}_1, \mathcal{K}_1), \phi)$ if f_0 and f_1 have a *simultaneous* tracker.

Consider $\Sigma \in \mathsf{Asm}(\mathcal{K}_1)$ where $|\Sigma| = 2$ and

 $E_{\Sigma} = \{(0,n) \mid nn \downarrow\} \cup \{(1,n) \mid nn \uparrow\}.$

Then $\mathcal{K}_1/\Sigma = ((\mathcal{K}_1, \mathcal{K}_1), \phi)$ is *not* generated by some $\mathcal{C} \subseteq (\mathbb{N}, \mathbb{N})$.

< ロト < 同ト < ヨト < ヨト

Consider $\Sigma\in \mathsf{Asm}(\mathcal{K}_1)$ where $|\Sigma|=2$ and

 $E_{\Sigma} = \{(0,n) \mid nn \downarrow\} \cup \{(1,n) \mid nn \uparrow\}.$

Then $\mathcal{K}_1/\Sigma = ((\mathcal{K}_1, \mathcal{K}_1), \phi)$ is *not* generated by some $\mathcal{C} \subseteq (\mathbb{N}, \mathbb{N})$.

An arrow (f_0, f_1) : $(X_0, X_1) \to (Y_0, Y_1)$ of $Asm(\mathcal{K}_1)^2$ belongs to $Asm((\mathcal{K}_1, \mathcal{K}_1), \phi)$ if, for some total recursive function g, we have that g(n) tracks f_0 if $nn \downarrow$, while g(n) tracks f_1 if $nn\uparrow$.

< ロト < 同ト < ヨト < ヨ

The natural numbers object $N \in Asm(\mathcal{K}_1)$ is given by $|N| = \mathbb{N}$ and $E_N = \delta \subseteq \mathbb{N} \times \mathbb{N}$. We have $\mathcal{K}_1/N \cong ((\mathcal{K}_1)_{n \in \mathbb{N}}, \phi)$, where

$$\phi = \{ (U_n)_{n \in \mathbb{N}} \mid \exists a \in \mathbb{N}_{\mathsf{rec}}^{\mathbb{N}} \, \forall n \in \mathbb{N} \, (a_n \in U_n) \}.$$

The natural numbers object $N \in Asm(\mathcal{K}_1)$ is given by $|N| = \mathbb{N}$ and $E_N = \delta \subseteq \mathbb{N} \times \mathbb{N}$. We have $\mathcal{K}_1/N \cong ((\mathcal{K}_1)_{n \in \mathbb{N}}, \phi)$, where

$$\phi = \{ (U_n)_{n \in \mathbb{N}} \mid \exists a \in \mathbb{N}_{\mathsf{rec}}^{\mathbb{N}} \, \forall n \in \mathbb{N} \, (a_n \in U_n) \}.$$

Example

The natural numbers object $N \in Asm(\mathcal{PN})$ is given by $|N| = \mathbb{N}$ and $E_N = \{(n, \{n\}) \mid n \in \mathbb{N}\}$. We have

$$\mathcal{P}\mathbb{N}/\mathcal{N}\cong ((\mathcal{P}\mathbb{N})_{n\in\mathbb{N}},\phi_{\max})\cong\prod_{n\in\mathbb{N}}\mathcal{P}\mathbb{N},$$

The natural numbers object $N \in Asm(\mathcal{K}_1)$ is given by $|N| = \mathbb{N}$ and $E_N = \delta \subseteq \mathbb{N} \times \mathbb{N}$. We have $\mathcal{K}_1/N \cong ((\mathcal{K}_1)_{n \in \mathbb{N}}, \phi)$, where

$$\phi = \{ (U_n)_{n \in \mathbb{N}} \mid \exists a \in \mathbb{N}_{\mathsf{rec}}^{\mathbb{N}} \, \forall n \in \mathbb{N} \, (a_n \in U_n) \}.$$

Example

The natural numbers object $N \in Asm(\mathcal{PN})$ is given by $|N| = \mathbb{N}$ and $E_N = \{(n, \{n\}) \mid n \in \mathbb{N}\}$. We have

$$\mathcal{P}\mathbb{N}/\mathcal{N}\cong ((\mathcal{P}\mathbb{N})_{n\in\mathbb{N}},\phi_{\max})\cong\prod_{n\in\mathbb{N}}\mathcal{P}\mathbb{N},$$

so $\operatorname{Asm}(\mathcal{P}\mathbb{N})/N \simeq \prod_{n \in \mathbb{N}} \operatorname{Asm}(\mathcal{P}\mathbb{N}).$

- Background and Motivation
- 2 PCAs over Heyting Categories

Let $p: \mathcal{G} \to \mathcal{H}$ be an *open* geometric morphism between toposes, and suppose we have an applicative morphism $(p^*, f): (A, \phi) \to (B, \psi)$.

Let $p: \mathcal{G} \to \mathcal{H}$ be an *open* geometric morphism between toposes, and suppose we have an applicative morphism $(p^*, f): (A, \phi) \to (B, \psi)$.

Let $p: \mathcal{G} \to \mathcal{H}$ be an *open* geometric morphism between toposes, and suppose we have an applicative morphism $(p^*, f): (A, \phi) \to (B, \psi)$.

Question

When doen $Asm(p^*, f)$ have a right adjoint?

Example

If (A, ϕ) is an HPCA over \mathcal{H} and $p: \mathcal{H} \to \mathcal{G}$ is a Heyting functor, then the cocartesian arrow $(A, \phi) \to p^*(A, \phi)$ is computationally dense.

Example

If (A, ϕ) is an HPCA over \mathcal{H} and $p: \mathcal{H} \to \mathcal{G}$ is a Heyting functor, then the cocartesian arrow $(A, \phi) \to p^*(A, \phi)$ is computationally dense. In particular, the projections $\prod_{j \in J} (A_j, \phi_j) \to (A_j, \phi_j)$ are computationally dense.

Example

If (A, ϕ) is an HPCA over \mathcal{H} and $p: \mathcal{H} \to \mathcal{G}$ is a Heyting functor, then the cocartesian arrow $(A, \phi) \to p^*(A, \phi)$ is computationally dense. In particular, the projections $\prod_{j \in J} (A_j, \phi_j) \to (A_j, \phi_j)$ are computationally dense.

Example

If $I \in Asm(A, \phi)$, then there is a canonical applicative morphism $(A, \phi) \rightarrow (A, \phi)/I$, which is computationally dense.

References

🚺 J. Frey.

A fibrational study of realizability toposes. PhD thesis, Université Paris Diderot (Paris 7), 2014.

P. T. Johnstone.

Geometric morphisms of realizability toposes.

Theory and Applications of Categories, 28(9):241–49, 2013.

📔 W. P. Stekelenburg.

Realizability Categories.

PhD thesis, Utrecht University, 2013.

J. van Oosten.

Realizability: An Introduction to its Categorical Side, volume 152 of *Studies in Logic and the Foundations of Mathematics*. Elsevier, 2008.

CT2019 21/21