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Motivation & perspective

Lawvere noticed that metric spaces are categories enriched over

R≥0 = (0← · · · ← r ← · · · ← ∞)

with tensor given by addition.

X (a, b) is “the distance from a to b”, and the condition

X (a, b) + X (b, c) −→ X (a, c)

is the triangle inequality.

X (a, b) expresses degree of truth of the equality predicate on a and b

0 is “true” and ∞ is “false”
The triangle inequality is the transitivity of equality

We work with I = (0← · · · ← r ← · · · ← 1) with truncated addition.

Simon Cho (UMich) Continuous semantics July 12, 2019 3 / 25



Motivation & perspective

On the one hand, continuous logic is a relatively new [0, 1]-valued first
order logic important to the model theory community.

One reason for this is that surprisingly many of the (non-continuous)
model theoretic notions have sensible continuous analogues.

On the other hand, categorical semantics has been extremely successful at
analyzing the logical structure of categories.
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Brief review of continuous logic

Continuous logic is the same as the usual first order logic, except:

Sorts are interpreted as metric spaces (as opposed to as sets) with
diameter ≤ 1.

Function & predicate symbols come with a specified modulus of
uniform continuity; their interpretations must obey the modulus

Predicates are interpreted as uniformly continuous maps X → [0, 1]
(as opposed to as set functions X → {0, 1})
The distance function on a space X plays the role of the equality
predicate

Universal/existential quantification is sup/inf

So the interpretation of the syntax of continuous logic takes place in the
category Met whose objects are metric spaces of diameter ≤ 1, and whose
morphisms are uniformly continuous maps.

We work in the category pMet, which allows pseudometric spaces.
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The category of metric spaces

Categorical semantics informs us what structures are required of a given
category in order to support various fragments of logic.

To get all of first order logic, sufficient to require the category be geometric

has finite limits

has images which are stable under pullback

for each object X , Subm X is small-complete lattice with structure
preserved by pullback

interpret predicates on X as subobjects of X

Example: Set
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The category of metric spaces

There is a variant using regular monos instead of monos: we require that
the category

has finite limits

has regular images which are stable under pullback

composing two regular monos yields a regular mono

for each X , the lattice SubX of regular subobjects is small-complete,
with structure preserved by pullback

interpret predicates on X as regular subobjects of X

Example: pMet
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Barr’s equivalence

Barr established the following equivalence of categories, given a locale L:

Fuz(L) ' Mon(L+)

Fuz(L) is the category whose objects are set functions ξ : X → |L|
and morphisms are (noncommutative) triangles

X Y

|L|

f

ξ η

for which f ◦ η ≤Lop ξ

Mon(L+) is the category of sheaves of monos∗ on L+, where
L+ = L ∪ {i} and the topology is the logic topology
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Barr’s equivalence

Fuz(L) ' Mon(L+)

The actual maps are given by

ξ 7→ (r 7→ {x | ξ(x) ≤Lop r})
(x 7→ inf{r ∈ Lop | x ∈ R(r)}) ←[ R

R ∈ Mon(L+) is (up to iso) a meet-preserving functor R : Lop → Sub(Rtot)
where Rtot =

⋃
r∈Lop

R(r).

The slogan is:

A function on X valued in |L| is equivalent to the data of meet-preserving
(L+)op-indexed sublevelsets of X .
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Indexed subobjects

As a trivial special case of Barr’s equivalence.

Write 2 = (0← 1) and |2| = {0, 1}.

In Set, a predicate R on X is:

Function χR : X −→ |2|
Functor R : 2op −→ SubX where

R(0) = {x ∈ X | χR(x) ≤2op 0}
R(1) = {x ∈ X | χR(x) ≤2op 1} = X ,

i.e. a meet-preserving functor R : 2op → SubX

So the subobject classifier in Set is just a Barr-style equivalence between
functions into classical truth values and functors of subobjects on classical
truth values.
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Indexed subobjects

Recall I = 0← · · · ← r ← · · · ← 1, and write |I| = [0, 1].

In continuous logic, predicates on X ∈ pMet are uniformly continuous
maps X → |I|. These should correspond to appropriate functors
Iop → SubX .

Given f : X → |I|, should look at functor Rf : Iop → SubX defined by

Rf (r) = {x ∈ X | f (x) ≤Iop r}

Continuity of f should translate into some property of Rf ...
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Formalizing the metric

Given X ∈ pMet with metric dX , have DX : Iop → Sub(X × X ) defined by

DX (r) = {(x , y) ∈ X × X | dX (x , y) ≤Iop r}

Proposition

There is a choice of distinguished DX : Iop → Sub(X × X ) for each
X ∈ pMet, as well as a choice of product X × Y for each X ,Y ∈ pMet,
such that the following hold:
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Formalizing the metric

DX (0) contains the diagonal;

The symmetry iso X × X
∼=−→ X × X takes DX to itself;

Letting πi ,j : (X × X × X )→ (X × X ) denote the projection onto i th

and j th factors respectively,

π∗i ,jDX (r) ∧ π∗j ,kDX (s) ≤ π∗i ,kDX (r + s)

Letting r = inf
i
ri for r , ri ∈ Iop, then DX (r) =

∧
i
DX (ri ).

Let πX×X : (X × Y × X × Y )→ (X × X ) and
πY×Y : (X × Y × X × Y )→ (Y × Y ) denote the projections
preserving the ordering of the factors. Then

DX×Y (r) = (πX×X )∗DX (r) ∧ (πY×Y )∗DY (r)
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Formalizing continuity

An inf- and 0-preserving increasing function ε : [0, 1]→ [0, 1] is a modulus
of continuity for f : X → Y when for all r ∈ [0, 1]

dX (a, b) ≤ r =⇒ dY (f (a), f (b)) ≤ ε(r).

Translating into our setting, we say an inf- and 0-preserving functor
ε : Iop → Iop is a modulus of continuity for f : X → Y when for all r ∈ Iop

DX (r) ≤ (f × f )∗DY (ε(r)).

Let E ⊆ End(Iop) be the submonoid (under composition) of all such ε.

Can vary E to allow only Lipschitz or 1-Lipschitz maps

Important real analysis properties of pMet follow categorically from our
formulation.
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Maps into [0, 1]

Consider |I| = [0, 1] with the obvious metric. Define TI : Iop → Sub |I| by

TI(r) = [0, r ].

Lemma

A map f : X → |I| is continuous w.r.t. ε ∈ E iff for all r , s ∈ Iop, we have

(π1)∗f ∗TI(r) ∧ DX (s) ≤ (π2)∗f ∗TI(r + ε(s))
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Continuous predicates

Definition

Given X ∈ pMet and ε ∈ E , call R : Iop → SubX an ε-predicate on X
when

For r = inf
i
ri in Iop, R(r) =

∧
i
R(ri )

For all r , s ∈ Iop,

(π1)∗R(r) ∧ DX (s) ≤ (π2)∗R(r + ε(s))

Write Subε X ⊆ [Iop, SubX ] for the full subcategory on ε-predicates on X .

Proposition

For f : X → Y with modulus εf , and R ∈ Subε Y , we have that
f ∗R ∈ [Iop,SubX ] is an (ε ◦ εf )-predicate.
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Continuous predicate classifier

Recall TI : Iop → Sub |I| is defined as

TI(r) = [0, r ]

so clearly TI ∈ Sub1Iop |I|.

Theorem

Given f : X → |I| with modulus ε ∈ E ,

Rf := f ∗TI

is an ε-predicate on X .

Given R ∈ Subε X , the function fR : X → |I| defined by

fR(x) = inf{r ∈ Iop | x ∈ R(r)}

is a uniformly continuous map with modulus ε ∈ E .

These operations are inverse to each other, and natural in X .
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Sanity check

For any geometric category C (e.g. Set), we have 2-valued “metrics”:
given any X ∈ C, set

DX (0) = diagonal

DX (1) = X × X

Also let

{12op} = E ⊆ End(2op)

Then a “continuous predicate” on X is exactly just a subobject of X .

If we have some Ω ∈ C and some given T2 ∈ Sub Ω, the analogous
statement of the previous theorem (with Ω in place of |I|) precisely means
that Ω is a subobject classifier.
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Quantification

Let X ∈ pMet. The property of being an ε-predicate is closed under
taking limits (meets) in [Iop,SubX ], so there is an adjunction

Subε X [Iop,SubX ]
Lε

iε

`

Given f : X → Y with modulus ε, we define the dashed functor in

[Iop,SubX ] [Iop, SubY ]

Subε◦εf X Subε Y

∃f

Lε◦εf
f ∗

`
Lεiε◦εf

`

iε

`

as Lε∃f iε◦εf , which we will also denote ∃f : Subε◦εf X → Subε Y by abuse.

Proposition

∃f : Subε◦εf X → Subε Y is left adjoint to f ∗ : Subε Y → Subε◦εf X .
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Quantification

Recall that universal/existential quantification in continuous logic is
sup/inf.

Proposition

For each X ,Y ∈ pMet and each R ∈ Subε(Y × X ) with
πX : Y × X → X , the correspondence R 7→ fR of the predicate classifier
gives correspondences

∃πXR ∈ Subε X 7→ inf
y∈Y

fR(y ,−) : X → |I|

For Y inhabited: ∀πXR ∈ Subε R 7→ sup
y∈Y

fR(y ,−) : X → |I|
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In more general categories

Let C be (a variant of) a geometric category, and fix a submonoid
E ⊆ End(Iop).

Definition

We call C metrizable (w.r.t E ) when it satisfies the conditions in the slide
“formalizing the metric”, plus:

For each morphism f : X → Y there is some ε ∈ E such that for all
r ∈ Iop,

DX (r) ≤ (f × f )∗DY (ε(r))

A metrizable category has many of the features of the category pMet. In
particular, the definition of ε-predicates makes sense, and their basic
properties remain valid.
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In more general categories

Also makes sense to ask for a predicate classifier:

Definition

A predicate classifier is given by an object Ω ∈ C (and its metric DΩ),
along with a 1I-predicate CI ∈ Sub1I Ω such that:

For any R ∈ Subε X , there is a unique f : X → Ω such that R = f ∗TI, and
moreover this f has modulus ε.

So pMet is a metrizable category which has a predicate classifier.
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Presheaves of metric spaces

Let C be any small category.

Proposition

The category MPSh(C) of presheaves of metric spaces (with 1-Lipschitz
maps between them) on C is metrizable w.r.t. E = {1I}.

(Nothing special going on above; just take the metric pointwise on C.)

For convenience let us write Sub1Iop X as SubI X .

Theorem

MPSh(C) has a predicate classifier.
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Presheaves of metric spaces

Need to give three things:

A functor Ω : Cop → pMet1

A specified predicate on Ω, i.e. TI ∈ SubI Ω

such that for any X ∈ MPSh(C), there is a natural correspondence

R ∈ SubI X 7→ fR : X → Ω

with R = (fR)∗TI.

For each a ∈ C, the underlying set of Ω(a) is the set of functors
S : Iop → Sa, where Sa is the poset of sieves on a, satisfying the property

S(inf
i
ri ) =

∧
i

S(ri )
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Presheaves of metric spaces

For each a ∈ C, we define a function ν : |Ω(a)| → [0, 1] by

νa(S) = inf{r | S(r) is the maximal sieve on a}

and a function d−a : |Ω(a)| × |Ω(a)| −→ [0, 1] by

d−a (S1, S2) = |νa(S1)− νa(S2)|

We define da : |Ω(a)| × |Ω(a)| −→ [0, 1] by

da(S1, S2) = sup
f :b→a

d−b (|Ωf |(S1), |Ωf |(S2))

Define TI : Iop → Sub Ω as

TI(r) =
(
a 7→ ν−1

a ([0, r ]) ⊆ Ω(a)
)
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