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Warning

This is work in progress and not as thoroughly checked as I would have
liked!

Terminology might still change!

I’m in a hurry, so I will not have time to properly discuss related work!
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Section 1

The main question
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Kan fibrations

Definition

A map p : Y → X is a Kan fibration if for any horn Λn
k → ∆n and any

commutative diagram
Λn
k

//

��

Y

p

��
∆n //

>>

X

there exists a dotted arrow making both triangles commute.

First question

In a constructive setting, should we demand the existence of such fillers
(property) or should we say that a Kan fibration is a map equipped with a
choice of fillers (structure)?

Our answer

It should be structure!
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Uniform Kan fibrations: the very idea

Definition

A map p : Y → X is a algebraic Kan fibration if for any commutative
diagram of the form

Λn
k

//

��

Y

p

��
∆n //

>>

X

it comes equipped with a choice of filler (the dotted arrow).

Second question

In a constructive setting, should these fillers satisfy some compatibility
conditions or can they be completely unrelated?

Our answer

Some compatibility (uniformity) conditions should be satisfied!
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Goal

But what should the compatibility/uniformity conditions be?

Purpose of the talk

Propose a (new) definition of a uniform Kan fibration.
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Section 2

Algebraic weak factorisation systems
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Algebraic weak factorisation systems

Functorial factorisation

A functor C→ → C→→ is a functorial factorisation on a category C if it is a
section of the composition functor ◦ : C→→ → C→.

So a functorial factorisation writes every map f in C as a composition:

X
f

// Y

X
Lf // Ef

Rf // Y

X
1 //

Lf
��

X

f
��

Ef
Rf
// Y

X
Lf //

f
��

Ef

Rf
��

Y
1
// Y

This turns the functors L and R into (co)pointed endofunctors C→ → C→.

Algebraic weak factorisation system (Grandis-Tholen-Garner)

A functorial factorisation is an algebraic weak factorisation system (AWFS)
if L and R can be extended to a comonad and a monad on C→,
respectively, and a distributive law holds (for the comonad over the
monad).
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Left and right maps

Given an AWFS:

a left map is a coalgebra for the comonad.

a right map is an algebra for the monad.

Both are closed under composition and the left maps have the LLP wrt to
the right maps.

But the classes are not closed under retracts. Their retract closures give
one an ordinary weak factorisation system.
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Cofibrations

Cofibrations, constructively

A map f : Y → X in simplicial sets is a cofibration if it is a
monomorphism, and given any x ∈ Xn, we can decide whether x lies in the
image of f , and if so, we can effectively find the y ∈ Yn such that
fn(y) = x .

These cofibrations form the left class in an AFWS. The associated right
class we will call uniform trivial Kan fibrations.
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Simplicial Moore path object
In Van den Berg & Garner, we defined a simplicial Moore path functor.
The idea is that there is an endofunctor M on simplicial sets together with
natural transformations r : X → MX , s, t : MX → X and
◦ : MX ×X MX → MX equipping X with the structure of an internal
category. In addition, there is a contraction Γ : MX → MMX .

Two new results:

Theorem

This functor M is polynomial.

Theorem

The functorial factorisation sending f : Y → X to

Y
(1,r .f ) // Y ×X MX

s.p2 // X

is part of an algebraic weak factorisation system.
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HDRs and naive fibrations

Hyperdeformation retracts (HDRs)

A hyperdeformation retract is a left map for this AWFS: that is, a map
i : Y → X for which there is a retraction j : X → Y and a homotopy
H : X → MX with H : 1 ' i .j such that Γ.H = PH.H.

Naive fibrations

A naive fibration is a right map for this AWFS: that is, a map p : Y → X
which comes equipped with a transport operation

T : Y ×X MX → Y

with p.T = s.p2, T .(1, r .p) = 1 and
T .(p1, µ.(p2, p3)) = T .(T .(p1, p2), p3).

Kan fibrations are naive fibrations, but the converse is false. Indeed, every
map X → 1 is a naive fibration.
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Section 3

Uniform Kan fibrations
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Mould square

Mould square

A square of the form A0

a
��

i0 // B0

b
��

A1
i1
// B1

is a mould square if:

the maps a and b are cofibrations and the square is a morphism of
cofibrations when read from left to right (which only means that it is
a pullback).

the maps i0 and i1 are HDRs and the square is a morphism of HDRs
when read from top to bottom.

the square for the retracts B0

b
��

j0 // A0

a
��

B1
j1
// A1

is a pullback as well.
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Properties of mould squares

Lemma

Any pair consisting of an HDR i1 : A1 → B1 and a cofibration a : A0 → A1

can be extended to a mould square in an (up to iso) unique way.

Properties of mould squares

Mould squares can be composed horizontally and vertically, and they can
be pulled back.

•

��

// •

��

// •

��
• // • // •

•

��

// •

��
• //

��

•

��
• // •

•

��

// •

��

•

??

//

��

•

��

??

• // •

• //

f
??

•

??
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Uniform Kan fibration

Definition

To equip a map p : Y → X with the structure of a uniform Kan fibration
means that one should specify for any solid commutative diagram

A

��

// B

��

// Y

p
��

C //

77

D //

>>

X

in which the left square is a mould square and for any map C → Y , a
particular morphism D → Y making everything commute, in a way which
respects horizontal and vertical composition, as well as base change of
mould squares.

•

��

// •

��

// •

��

// Y

p
��

• //

55

•

77

// • //

??
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Horn squares

Proposition

Uniform Kan fibration have the RLP wrt Horn inclusions.

Proof.

There is a special class of mould squares, which we call Horn squares:

∂∆n

��

// s∗i (∂∆n)

��
∆n

di/di+1 ,,
∆n+1

si

kk

The induced map from the pushout to the bottom-right object is the horn
inclusion Λn+1

i/i+1 → ∆n+1. Therefore uniform Kan fibration have the RLP
wrt Horn inclusions.
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Classically OK

In fact, one can show (with quite some effort!) that the lifts against the
mould squares determine the lifts against all the mould squares, and that
the uniformity conditions can be expressed purely as conditions on the lifts
against horn squares. This can be used to show:

Theorem

Classically (in ZFC) every Kan fibration can be equipped with the
structure of a uniform Kan fibration.

18 / 27



Towards an algebraic model structure

The main motivation for our work was to give constructive proofs of:

the existence of an algebraic model structure on simplicial sets.

the existence of a model of univalent type theory in simplicial sets.

Currently we have constructive proofs/proof sketches for:

the existence of a model structure on the simplicial sets, when
restricted to those that are uniformly Kan.

the existence of a model of type theory with Π,Σ,N, 0, 1,+,×.
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Future work

What remains to be proven (constructively!):

We can show that universal uniform Kan fibration exist, but we
haven’t shown they are univalent.

We haven’t shown that universes are uniformly Kan.

And we haven’t shown that there exists an algebraic model structure
on the entire category of simplicial sets based on our notion of a
uniform Kan fibration.
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THANK YOU!
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Section 4

Comparison with Gambino & Sattler
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Gambino & Sattler

Gambino and Sattler (in their paper “The Frobenius condition, right
properness, and uniform fibrations”) also propose a definition of a uniform
Kan fibration.

Proposition

Uniform Kan fibrations in our sense are also uniform Kan fibrations in the
sense of Gambino and Sattler.

I expect the converse to be false (constructively!).

One key difference is that our definition can be shown to be local.
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Local class

Definition

Let us say that a structure on morphisms is local if: to equip a morphism
f : Y → X with this structure it is necessary and sufficient to do this for
every pullback of f along a map x : ∆n → X , in such a way our choices
are stable under pulling back along maps α : ∆m → ∆n.

Yx ·α

��

// Yx

��

// Y

f
��

∆m
α
// ∆n

x
// X

Our notion is local (this follows from the fact that our uniformity
conditions can be expressed purely terms of fillers against horn squares),
but it is unclear whether the uniform Kan fibrations of Gambino & Sattler
are as well (constructively).

This prevents them from showing (constructively) that universal Kan
fibrations exist. 24 / 27



Section 5

The horn square definition
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The horn square definition

We introduce some notation.

First of all, let us write for each n ∈ N:

An =
{

(i , j , i + 1, j) : i , j ≤ n, j < i
}

∪
{

(i , j , i , j + 1) : i , j ≤ n, j > i
}

∪
{

(i , i , i , i + 1) : i ≤ n
}

∪
{

(i , i , i + 1, i) : i ≤ n
}

Secondly, let us write

Sn+1
j = s∗j ∂∆[n] = Λn+1

j ,j+1 ∪ (dj ∩ dj+1).
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The horn square definition
To equip a map p : Y → X with the structure of a uniform Kan fibration
it is necessary and sufficient to equip p with chosen fillers against horn
squares, in such a way that for any n ∈ N, (i , j , i∗, j∗) ∈ An and
± ∈ {+,−}: if f is our chosen solution to the lifting problem

(∂∆[n], 〈〉)

��

// (∂∆[n], 〈i ,±〉)

��

y // Y

p

��
(∆[n], 〈〉) //

g

33

(∆[n], 〈i ,±〉) x
//

f

88

X ,

then our chosen solution to the lifting problem

(∂∆[n + 1], 〈〉)

��

// (∂∆[n + 1], 〈i∗,±〉)

��

y ′ // Y

p

��
(∆[n + 1], 〈〉) //

g .sj

22

(∆[n + 1], 〈i∗,±〉) x .sj∗
//

77

X

should be f .sj∗ , where y ′ is the map which is y · sj∗ on Sn+1
j and f on the

faces dk with k ∈ {j , j + 1} − {i∗}.
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