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Nerves of Categories

Definition
Given a small category C, define a simplicial set NpCq as follows:

• NpCq0 = objects of C

• NpCq1 = morphisms of C

• NpCq2 = pairs of composible morphisms in C

• NpCq3 = triples of composible morphisms in C
...

N : Cat ãÑ Set∆op
(full/faithful)

Examples

∆rns “ Np‚ . . . ‚q
g1 gn

J :“ Np‚ ‚q
g

g -1
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The inclusion Sprns ãÑ ∆rns
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Categories are “1-Segal Sets”

Unique lifting condition for categories is 1-dimensional:

Sprns is composed of 1-simplices.

Interpretation

Categories are “1-Segal sets.”

What are 2-Segal sets?

• More general than categories

• Unique “2-dimensional spine extensions”

è still “strict”



Categories are “1-Segal Sets”

Unique lifting condition for categories is 1-dimensional:

Sprns is composed of 1-simplices.

Interpretation

Categories are “1-Segal sets.”

What are 2-Segal sets?

• More general than categories

• Unique “2-dimensional spine extensions”

è still “strict”



Categories are “1-Segal Sets”

Unique lifting condition for categories is 1-dimensional:

Sprns is composed of 1-simplices.

Interpretation

Categories are “1-Segal sets.”

What are 2-Segal sets?

• More general than categories

• Unique “2-dimensional spine extensions”

è still “strict”



Categories are “1-Segal Sets”

Unique lifting condition for categories is 1-dimensional:

Sprns is composed of 1-simplices.

Interpretation

Categories are “1-Segal sets.”

What are 2-Segal sets?

• More general than categories

• Unique “2-dimensional spine extensions”

è still “strict”



Categories are “1-Segal Sets”

Unique lifting condition for categories is 1-dimensional:

Sprns is composed of 1-simplices.

Interpretation

Categories are “1-Segal sets.”

What are 2-Segal sets?

• More general than categories

• Unique “2-dimensional spine extensions”

è still “strict”



2-Segal Sets

Triangulations of the square:

23T :

0 1

23T 1 :

0 1

1

3

2

0

1

3

2

0



2-Segal Sets

Triangulations of the square:

23T :

0 1

23T 1 :

0 1

1

3

2

0

1

3

2

0



2-Segal Sets

Triangulations of the hexagon:

0 1

2

34

5

T :

0 1

2

34

5

T 1 :

(etc.)



2-Segal Sets

Intuition
Think of the inclusions T ãÑ ∆rns as “2-dimensional spine
extensions.”

Definition
A 2-Segal set is a simplicial set X with a unique lifting condition:

X is 2-Segal
ðñ

T X

∆rns

D!

ně 3



2-Segal Sets

Intuition
Think of the inclusions T ãÑ ∆rns as “2-dimensional spine
extensions.”

Definition
A 2-Segal set is a simplicial set X with a unique lifting condition:

X is 2-Segal
ðñ

T X

∆rns

D!

ně 3



2-Segal Sets

Examples

• (Nerves of) categories are 2-Segal.

(1-Segal ñ 2-Segal.)

• Output of Waldhausen S‚ construction (from algebraic
K-theory) applied to nice enough double categories.

• Lots of other examples from combinatorics.

Another Perspective

2-Segal sets are equivalent to multivalued categories, where
composition is not always unique or defined, but is associative.
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Homotopical/8/Non-Strict Versions

Categories have a homotopical analogue in simplicial sets.

Definition
A quasi-category is a simplicial set X with a (non-unique) lifting
condition:

X is a
quasi-category

ðñ

Λirns X

∆rns

D

0ă iăn

• Composition is always defined, but only “unique up to
homotopy.”

• Special Case: If all morphisms are invertible, we have a Kan
complex—also defined by a non-unique lifting condition.
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Model Structure = “Homotopy Theory”

We can endow a category with a “homotopy theory” by putting a
model structure on it.

Every model structure comes with a class of well-behaved objects,
called the fibrant objects, defined by a lifting condition.

Examples

• Classical model structure on Set∆op
:

è equivalent to homotopy theory of topological spaces

è fibrant objects: Kan complexes

• Joyal model structure on Set∆op
:

è fibrant objects: quasi-categories
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Model structures are very finicky.

Most lifting conditions will not give us a model structure.

Idea
Look for a model structure first, then decide if the fibrant objects
have the properties we want.

How do we find new model structures?
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Cisinski’s Theory

Classical/Joyal model structures share some properties:

• Cofibrations = Monomorphisms

• Fibrant objects defined by lifting against a set. (The model
structures are cofibrantly generated.)

Cisinski gives us a way to find model structures with these
properties.
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Pushout-Product
Given A ãÑ B and C ãÑ D, the induced map

Aˆ C AˆD

B ˆ C pB ˆ Cq Y pAˆDq

B ˆD

is their pushout-product, denoted pA ãÑ BqlpC ãÑ Dq.



Pushout-Product

Example

The pushout product of 0 ãÑ ∆r1s and B∆r1s ãÑ ∆r1s is

p∆r1s ˆ B∆r1sq Y p0ˆ∆r1sq ∆r1s ˆ∆r1s

which looks like

ãÑ



Cisinski’s Theory

Bdry :“ tB∆rns ãÑ ∆rnsuně0 J “ Np‚ ‚q BJ “ 0Y 1

S a set of AJpSq :“ Bdry lp0 ãÑ Jq

monomorphisms Y S

Y S lpBJ ãÑ Jq

Y pS lpBJ ãÑ JqqlpBJ ãÑ Jq

...

Theorem (Cisinski)

• For any set S of monomorphisms, there is a model structure
whose fibrant objects are those with lifts against AJpSq.

• When the fibrant objects of a given model structure all lift
against S, they also lift against AJpSq.
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Joyal Model Structure

Example

If S is the set of spine extensions, we get the Joyal model structure.

Idea
If we didn’t know what a quasi-category was, we could let S be the
spine extensions, and Cisinski’s theory would tell us what a
quasi-category should be.
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Are We Done?

Now let S “ tT ãÑ ∆rnsu, the “two dimensional spine extensions.”

Shouldn’t AJpSq answer our question?

Yes, but. . .

Analogy

Group presentations often don’t tell us that much about a group.

Similarly, even with the description from Cisinski’s theory, there is
still a lot we don’t know about our model structure.
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Minimal Model Structure

Bdry :“ tB∆rns ãÑ ∆rnsuně0 J “ Np‚ ‚q

AJp∅q :“ Bdry lp0 ãÑ Jq

Theorem (Cisinski)

There is a model structure whose fibrant objects are those with
lifts against AJp∅q; the minimal model structure on Set∆op

.

Ex: n “ 1
ãÑ
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Horns and Iso-Horns

Horns

• Simplex =

Np‚ ‚ . . . ‚ ‚q

• Face = delete one vertex

• Horn = union of all faces but one

n “ 2 Horn Extension

ãÑ

Iso-Horns

• Isoplex =

Np‚ . . . ‚ ‚ . . . ‚q

• Face = delete one vertex

• Horn = union of all faces but one,
the one opposite a vertex of the
isomorphism

n “ 2 Iso-Horn Ext’n
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Theorem

Theorem (F.)

The fibrant objects in the minimal model structure are those with
lifts against IsoHorn.

In fact, AJp∅q “ IsoHorn.

30-Second Sketch of Proof

• Elements of IsoHorn are retracts of things in AJp∅q.
• Elements of AJp∅q are built out of elements of IsoHorn (via

transfinite composition of pushouts).

è Codomains are categories, so n-simplices are equivalent
to paths of arrows.
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Interpretation

In category theory:

c – d ùñ Hompc, xq – Hompd, xq for all x

When c and d are isomorphic, their relationship to the rest of the
category is also equivalent.

Fibrant Objects in the Minimal Model Structure

Similar thing happens: if two 0-simplices are “isomorphic,” then
there is a correspondence between the n simplices of which they
are vertices.

è x – y ùñ x and y interact with the rest of X equivalently.
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Model Structures on Set∆op

QCat Kan M Ñ N indicates

...
... FibObM Ě FibObN

QCatn Kann

...
... Homology

QCat0 Kan0

QCat´1 Kan´1

Trivial
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Htpy?

. . . Q-3-Seg? Q-2-Seg? QCat
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M Ñ N indicates FibObM Ě FibObN
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