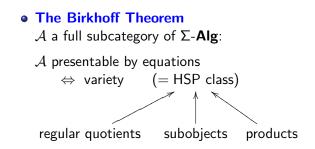
Profinite Monads and Reiterman's Theorem

J. Adámek, L.-T. Chen, S. Milius and H. Urbat

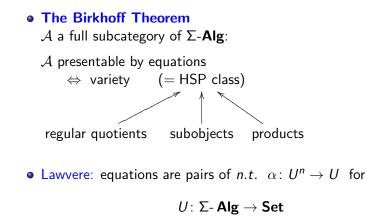
Category Theory 2019 Edinburg

J. Adámek, L.-T. Chen, S. Milius and H. Urbat

The Birkhoff Variety Theorem (1935)



The Birkhoff Variety Theorem (1935)



An algebra A satisfies $\alpha = \alpha'$ iff $\alpha_A = \alpha'_A$

The Reiterman Theorem (1982)

• The Reiterman Theorem

 \mathcal{A} a full subcategory of $(\Sigma$ - **Alg**)_f:

 \mathcal{A} presentable by pseudoequations \Leftrightarrow pseudovariety (= HSP_f class)

The Reiterman Theorem (1982)

• The Reiterman Theorem

 \mathcal{A} a full subcategory of $(\Sigma - \mathbf{Alg})_f$:

 \mathcal{A} presentable by pseudoequations \Leftrightarrow pseudovariety (= HSP_f class)

U_f: (Σ- Alg)_f → Set_f
 Pseudoequations are pairs of n.t. α: Uⁿ_f → U_f
 a finite algebra A satisfies α = α' iff α_A = α'_A

The Reiterman Theorem (1982)

• Example Un, unary algebras

$$\sigma \colon A \to A$$

A finite
$$\Rightarrow \exists n : \sigma^n = (\sigma^n)^2$$

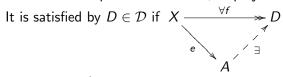
Notation : $\sigma^* = \sigma^n$

Pseudoequation : $\sigma^*(x) = x$ presents : finite algebras with σ invertible

Banaschewski and Herrlich (1976)

D a complete category
 (E, M) a proper factorization system (e.g. regular epi - mono)
 notation → and →
 D has enough projectives X: ∀D∃X → D

Definitions An equation $e: X \rightarrow A, X$ projective.



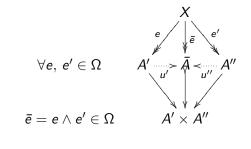
(*D* is *e*-injective)

Theorem A full subcategory \mathcal{A} of \mathcal{D} : \mathcal{A} presentable by equations \Leftrightarrow a variety (= HSP class)

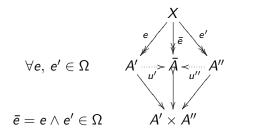
• Assume : \mathcal{D} and $(\mathcal{E}, \mathcal{M})$ as above $\mathcal{D}_f \subseteq \mathcal{D}$ full subcategory closed under S and P_f 'finite' objects

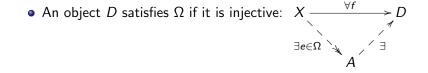
- Assume : \mathcal{D} and $(\mathcal{E}, \mathcal{M})$ as above $\mathcal{D}_f \subseteq \mathcal{D}$ full subcategory closed under S and P_f 'finite' objects
- Definition A pseudovariety is a full subcategory of D_f closed under HSP_f.

Definition A quasi-equation over X (projective) is a semilattice Ω of finite quotients e: X → A (A ∈ D_f)



Definition A quasi-equation over X (projective) is a semilattice Ω of finite quotients e: X → A (A ∈ D_f)





Proposition A a full subcategory of D_f:
 A presentable by quasi-equations ⇔ A a pseudovariety

 Proposition A a full subcategory of D_f: A presentable by quasi-equations ⇔ A a pseudovariety
 Proof ⇐ For every X projective

 $\Omega_X : X \twoheadrightarrow A(A \in \mathcal{A})$

$$\begin{array}{l} \Omega_X \quad \text{semilattice} \leftarrow \mathcal{A} \text{ is } SP_f\text{-class} \\ D \in \mathcal{A} \Rightarrow D \text{ satisfies } \Omega_X \quad \dots \text{ trivial} \\ D \text{ satisfies each } \Omega_X \Rightarrow D \in \mathcal{A} : \text{ choose } X \xrightarrow{f} D, \\ \downarrow & \swarrow e \\ A \end{array}$$

Our Goal

• Given : \mathcal{D} , $(\mathcal{E}, \mathcal{M})$ and \mathcal{D}_f as above \mathbb{T} a monad on \mathcal{D} preserving \mathcal{E} Describe pseudovarieties in $\mathcal{D}^{\mathbb{T}}$ by **equations** in some extension of $\mathcal{D}^{\mathbb{T}}$

- D^T has the factorization system inherited from D it has enough projectives : (TX, μX) with X projective D^T_f ^{def} all algebras (A, α) with A ∈ D_f

- Given : D, (E, M) and D_f as above T a monad on D preserving E

 Describe pseudovarieties in D^T by equations
 in some extension of D^T
- $\mathcal{D}^{\mathbb{T}}$ has the factorization system inherited from \mathcal{D} it has enough projectives : $(TX, \mu X)$ with X projective $\mathcal{D}_{f}^{\mathbb{T}} \stackrel{\text{def}}{=} \text{all algebras } (A, \alpha) \text{ with } A \in \mathcal{D}_{f}$
- ullet Thus pseudovarieties are presentable by quasi-equations in $\mathcal{D}^{\mathbb{T}}$

The Category $\hat{\mathcal{D}}_f$

- **Profinite completion** Pro $\mathcal{D}_f = \hat{\mathcal{D}}_f$ (dual to Ind)
 - $\hat{\mathcal{D}}_f$ finitely complete $\Rightarrow \hat{\mathcal{D}}_f$ complete
 - $\hat{\mathcal{E}}=$ cofiltered limits of quotients in \mathcal{D}_{f}
 - $\hat{\mathcal{M}} =$ cofiltered limits of subobjects in \mathcal{D}_f

The Category \hat{D}_f

Profinite completion Pro D_f = D̂_f (dual to Ind) D_f finitely complete ⇒ D̂_f complete Ê = cofiltered limits of quotients in D_f M̂ = cofiltered limits of subobjects in D_f
Wanted: D̂_f has enough Ê-projectives T yields (canonically) a monad T̂ on D̂_f preserving Ê ⇒ D̂_f, (Ê, M̂) and T̂ satisfy all of our assumptions Goal : quasi-equations in D^T ⇔ equations in (D̂_f)^{T̂}

Important: ${\mathbb T}$ and $\hat{\mathbb T}$ have the same finite algebras

$$\mathcal{D}_f^{\mathbb{T}} \simeq \hat{\mathcal{D}}_f^{\hat{\mathbb{T}}}$$

Profinite Factorization Systems

Definition $(\mathcal{E}, \mathcal{M})$ is a **profinite** factorization system if \mathcal{E} is closed under cofiltered limits of quotients in $\mathcal{D}_{f}^{\rightarrow}$

Examples with $\mathcal{E} =$ surjective morphisms

• Set : $\hat{Set}_f = Stone$

Profinite Factorization Systems

Definition $(\mathcal{E}, \mathcal{M})$ is a **profinite** factorization system if \mathcal{E} is closed under cofiltered limits of quotients in $\mathcal{D}_{f}^{\rightarrow}$

Examples with $\mathcal{E} =$ surjective morphisms

- Set : $\hat{Set}_f = Stone$
- **Pos** : with \mathcal{E} = surjective monotone maps $\hat{Pos}_f = Priestley$

Definition $(\mathcal{E}, \mathcal{M})$ is a **profinite** factorization system if \mathcal{E} is closed under cofiltered limits of quotients in $\mathcal{D}_{f}^{\rightarrow}$

Examples with $\mathcal{E} =$ surjective morphisms

- Set : $\hat{Set}_f = Stone$
- **Pos** : with \mathcal{E} = surjective monotone maps $\hat{Pos}_f = Priestley$
- D ⊆ Σ-Str full subcategory closed under limits arbitrary operation symbols
 + finitely many relation symbols

Pro $\mathcal{D}_f \subseteq$ Stone \mathcal{D} $\hat{\mathcal{E}} =$ surjective continuous homomorphisms

Profinite monad $\hat{\mathbb{T}}$

• $\hat{\mathbb{T}}$ is the codensity monad of the forgetful functor $\mathcal{D}_f^{\mathbb{T}} o \hat{\mathcal{D}}_f$

Profinite monad $\hat{\mathbb{T}}$

• $\hat{\mathbb{T}}$ is the codensity monad of the forgetful functor $\mathcal{D}_f^{\mathbb{T}} o \hat{\mathcal{D}}_f$

Example $\mathcal{D} = \mathbf{Set}$, $TX = X^*$: the word monad $\hat{\mathbb{T}}$ is the monad of **profinite words** on $\hat{Mon}_f =$ Stone Mon

Î Y is the cofiltered limit of all finite *Ê*-quotients of Y carried by T-algebras

Example For $TX = X^*$: a profinite word in a Stone monoid *Y* is a compatible choice of a member of *A* for every finite quotient monoid *A* of *Y*.

Profinite monad $\hat{\mathbb{T}}$

• $\hat{\mathbb{T}}$ is the codensity monad of the forgetful functor $\mathcal{D}_f^{\mathbb{T}} o \hat{\mathcal{D}}_f$

Example $\mathcal{D} = \mathbf{Set}$, $TX = X^*$: the word monad $\hat{\mathbb{T}}$ is the monad of **profinite words** on $\hat{Mon}_f =$ Stone Mon

Î Y is the cofiltered limit of all finite *Ê*-quotients of Y carried by T-algebras

Example For $TX = X^*$: a profinite word in a Stone monoid *Y* is a compatible choice of a member of *A* for every finite quotient monoid *A* of *Y*.

Generalized Reiterman's Theorem

• Profinite equation = equation in $\hat{D}_{f}^{\hat{\mathbb{T}}}$ $e \colon P \to Q, P$ projective

Generalized Reiterman's Theorem

- Profinite equation = equation in $\hat{D}_{f}^{\hat{\mathbb{T}}}$ $e \colon P \to Q, P$ projective
- A finite T-algebra satisfies e : it is e-injective

Generalized Reiterman's Theorem

- Profinite equation = equation in $\hat{D}_{f}^{\hat{\mathbb{T}}}$ $e \colon P \to Q, P$ projective
- A finite T-algebra satisfies *e* : it is *e*-injective
- Theorem \mathcal{A} a full subcategory of $\mathcal{D}_f^{\mathbb{T}}$:

 ${\mathcal A}$ presentable by profinite equations \Leftrightarrow a pseudovariety

• Example $\mathcal{D} \subseteq \Sigma$ - Str closed under limits and subobjects $\hat{\mathcal{D}}_f \subseteq \text{Stone } \Sigma$ -Str

A profinite equation : $\alpha = \alpha'$ where $\alpha, \alpha' \in \hat{T}X$ X projective in \hat{D}_f

Given $e: (\hat{T}X, \mu_X) \twoheadrightarrow A$, take all $(\alpha, \alpha') \in ker$

Profinite Equations in Σ -Str

• Back to Reiterman : $U_f : (\Sigma - \mathbf{Alg})_f \to \mathbf{Set}_f$

n.t. $\alpha \colon U_f^n \to U_f \iff$ elements of $\hat{T}n$ pseudoequations \iff profinite equations

Profinite Equations in Σ -Str

• Back to Reiterman : $U_f : (\Sigma - \mathbf{Alg})_f \to \mathbf{Set}_f$

n.t. $\alpha \colon U_f^n \to U_f \iff$ elements of $\hat{T}n$ pseudoequations \iff profinite equations

• Varieties of ordered algebras . . . inequalities $\alpha \leq \alpha'$ between terms

 $\mathcal{D} = \mathbf{Pos}$ $\hat{\mathcal{D}}_f = \text{Priestley}$ profinite equations $e: (\hat{T}X, \mu_X) \twoheadrightarrow A$, X discretely ordered

↔ inequalities

J. E. Pin & P. Weil (1996)