Compositional Economic Game Theory

Neil Ghani

and Julian Hedges, Viktor Winschel, Philipp Zahn, MSP group, The Scottish Free State

1

- Compositionality: Operators build big games from small games
 - Lifting results about parts of a game to the whole game.
 - Crucial to understand: this is bottom up, not top down.
 - Optimal strategies for compound games from optimal strategies of their subcomponents!
- Motivation: Software
 Compositionality
 Structure
 Category Theory
 - Difficult \Rightarrow new concepts, eg *coutility*, *utility-indexed games*
 - You can learn economic game theory by learning category theory, the modelling language of the future

- Part 1: Good news, compositionality seems possible
- **Part 2:** Bad news, developing a theory becomes painful to the point of crucifixtion.
- **Part 3:** Resurrection! Category theory saves the day!!!!

Part I: Simple Games (Apologies from a Non-Expert to Experts!)

- Defn: A basic game consists of
 - A set of actions A the player can take, and a set U of utilities
 - A function $f: A \rightarrow U$ assigning to each action, a *utility*
- **Defn:** Optimal actions/equilibria for a simple game are

$$\mathsf{Eq}(A, U, f) = \operatorname{argmax} f = \{a \in A \mid (\forall a' \in A) f a \ge f a'\}$$

• Question: Is this definition correct for a two player game?

$$f: A_1 \times A_2 \to U_1 \times U_2$$

- Motivation: Two prisoners face a choice
 - Each is under pressure to report criminal behaviour of the other to the authorities.
 - They can cooperate with each other, or defect $\Rightarrow A = \{C, D\}$
 - Utilities are given by $f: A \times A \rightarrow Z \times Z$

$$f(C,C) = (0,0) \qquad f(D,C) = (1,-3)$$

$$f(C,D) = (-3,1) \qquad f(D,D) = (-2,-2)$$

- **Conclusion:** The best strategy for each player is to defect!
 - Rather depressing for utopians! Assumptions: no communication, no future cost for bad behaviour etc.

- Motivation: Simple game equilibria doesn't compute the optimal strategy in the prisoner's dilemma
- **Defn:** A 2-player game is
 - Sets of actions A_1, A_2 and utilities U_1, U_2 of utilities
 - A function $f:A_1\times A_2\to U_1\times U_2$ assigning to each pair of actions, a pair of utilities
- Defn: Optimal actions/equilibria for a 2-player game are given by Nash ⊆ A₁ × A₂

$$(a_1, a_2) \in \mathsf{Nash} \ f \quad \mathsf{iff} \quad a_1 \in \operatorname{argmax} (\pi_1 \circ f(-, a_2))$$
$$\land a_2 \in \operatorname{argmax} (\pi_2 \circ f(a_1, -))$$

- Key Idea: Nash equilibria are given as primitive.
 - This is not a compositional definition as the definition is not derived from equilibria for simpler games
 - It is simply postulated as reasonable, justified empirically.
- Question: Is there no operator which combines two 1-player games into a 2-player game?
 - And defines the equilibria of the derived game via those of the component games.
- **Remark:** Of course this is difficult as optimal moves for one game may not remain optimal when that game is incorporated into a networked collection of games.

- **Defn:** A *utility-free game* consists of
 - A set A of moves, a set U of utilities and an equilibria function E : $(A \rightarrow U) \rightarrow PA$ where P is powerset
 - The set of utility-free games with actions A and utilities U is written $\mathrm{UF}_A U$
- Key Idea: These games leave the utility function abstract
 - The equilibria is given for *every* potential utility function
 - And its not always argmax, eg Nash

• **Defn:** Let $G_1 \in UF_{A_1}U_1$ and $G_2 \in UF_{A_2}U_2$ be UF-games. Their monoidal product is the UF-game

$$G_1 \otimes G_2 : \mathsf{UF}_{A_1 \times A_2}(U_1 \times U_2)$$

with equilibrium function

$$(a_1, a_2) \in \mathsf{E}_{G_1 \otimes G_2} k \quad \text{iff} \quad a_1 \in \mathsf{E}_{G_1}(\pi_1 \circ k(-, a_2)) \land a_2 \in \mathsf{E}_{G_2}(\pi_2 \circ k(a_1, -))$$

• Thm: The above looks like Nash. Indeed, we have a beautiful equation

 $Nash = argmax \otimes argmax$

• Key Idea: CGT is possible. Don't hardwire a specific utility.

Neil Ghani

Part II: Our Idea Open Games

- Motivation: Simple games possess limited structure, and hence support limited operators
 - More operators \Rightarrow more compositionality
 - Lets develop a more complex model!
- Example: Lets place a bet
 - I have a bank balance. I have different strategies. These factors decide on my bet which I give to the bookmaker
 - The bookmaker has a variety of strategies to deal with my bet. When the event is finished, he returns my winnings
 - A forwards world of physical action, a backwards world of reflection on possible consequences of action.

Coutility needed for Conservation of Utility

- **Types:** Let X, Y, S, R be sets. Think of X as the game's state.
 - -Y is move or other observable action
 - -R is utility which the environment produces from a move
 - $-\ S$ is coutility which the system feeds into the environment
- Examples: X is my bank balance, the bet that the bookie must react to. External factors affecting our decisions
 - -Y is my bet or the action the bookie takes
 - -R is my winnings or the utility gained from the move
 - $-\ S$ is the coutility fed back into the system, eg the bookie sends me my winnings.

Definition of an Open Game

- **Defn** An open game $G: (X, S) \to (Y, R)$ is defined by
 - A set Σ of strategies
 - A play function $P : \Sigma \times X \to Y$
 - A coutility function $C: \Sigma \times X \times R \to S$
 - An equilibrium function $E: X \times (Y \to R) \to \mathsf{P}\Sigma$

where P is powerset.

• **Example:** Prisoners Dilemma PD : $(1,1) \rightarrow (M, Z \times Z)$ and strategies M, where $M = \{C, D\}^2$

- Two round PD: strategies $M \times (M \to M)$, moves M^2 , utility $(Z \times Z)^2$

• Assume: Given open games

$$G: (X,S) \to (Y,R)$$
 and $G': (X',S') \to (Y',R')$

• **Define:** Construct an open game

$$G \otimes G' : (X \times X', S \times S') \rightarrow (Y \times Y', R \times R')$$

• Assume: Given open games

$$G: (X,S) \to (Y,R)$$
 and $G': (X',S') \to (Y',R')$

• **Define:** Construct an open game

$$G \otimes G' : (X \times X', S \times S') \to (Y \times Y', R \times R')$$

where $\Sigma_{G \otimes G'} = \Sigma_G \times \Sigma_{G'}$ and
 $P_{G \otimes G'}$ (σ, σ') $(x, x') = (P_G \ \sigma \ x, P_{G'} \ \sigma' \ x')$

• Assume: Given open games

$$G: (X,S) \to (Y,R)$$
 and $G': (X',S') \to (Y',R')$

• **Define:** Construct an open game

$$G \otimes G' : (X \times X', S \times S') \to (Y \times Y', R \times R')$$

where $\Sigma_{G \otimes G'} = \Sigma_G \times \Sigma_{G'}$ and
$$P_{G \otimes G'} (\sigma, \sigma') (x, x') = (P_G \sigma x, P_{G'} \sigma' x')$$

$$C_{G \otimes G'} (\sigma, \sigma') (x, x') (r, r') = (C_G \sigma x r, C_{G'} \sigma' x' r')$$

$$G: (X,S) \to (Y,R)$$
 and $G': (X',S') \to (Y',R')$

• **Define:** Construct an open game

$$G \otimes G' : (X \times X', S \times S') \to (Y \times Y', R \times R')$$

where $\Sigma_{G \otimes G'} = \Sigma_G \times \Sigma_{G'}$ and
$$P_{G \otimes G'} (\sigma, \sigma') (x, x') = (P_G \ \sigma \ x, P_{G'} \ \sigma' \ x')$$

$$C_{G \otimes G'} (\sigma, \sigma') (x, x') (r, r') = (C_G \ \sigma \ x \ r, C_{G'} \ \sigma' \ x' \ r')$$

 $(\sigma, \sigma') \in E_{G \otimes G'} (x, x') \ k \text{ iff } \sigma \in E_G \ x \ (y \mapsto \pi_1(k(y, P_{G'} \sigma' x')))$
 $\land \ \sigma' \in E_{G'} \ x' \ (y' \mapsto \pi_2(k(P_G \sigma x, y')))$

• Obs: Still no category theory, but maybe no need either!

Neil Ghani

Sequential Composition of Open Games (eg 2 Round Games)

• Sequential Composition: Given open games

$$G: (X, S) \rightarrow (Y, R) \text{ and } H: (Y, R) \rightarrow (Z, T)$$

construct an open game

 $H \circ G : (X, S) \to (Z, T)$

where $\Sigma_{H \circ G} = \Sigma_H \times \Sigma_G$

• Sequential Composition: Given open games

$$G: (X, S) \rightarrow (Y, R)$$
 and $H: (Y, R) \rightarrow (Z, T)$

construct an open game

$$H \circ G : (X, S) \to (Z, T)$$

where $\Sigma_{H \circ G} = \Sigma_H \times \Sigma_G$

$$P_{H \circ G} (\sigma, \sigma') x = P_H \sigma' (P_G \sigma x)$$

• Sequential Composition: Given open games

$$G: (X, S) \rightarrow (Y, R)$$
 and $H: (Y, R) \rightarrow (Z, T)$

construct an open game

$$H \circ G : (X, S) \to (Z, T)$$

where $\Sigma_{H \circ G} = \Sigma_H \times \Sigma_G$

$$P_{H \circ G} (\sigma, \sigma') x = P_H \sigma' (P_G \sigma x)$$

$$C_{H \circ G} (\sigma, \sigma') x t = C_G \sigma x (C_H \sigma' (P_G \sigma x) t)$$

Sequential Composition of Open Games (eg 2 Round Games)

• Sequential Composition: Given open games

 $G: (X, S) \rightarrow (Y, R) \text{ and } H: (Y, R) \rightarrow (Z, T)$

construct an open game

$$H \circ G : (X, S) \to (Z, T)$$

where $\Sigma_{H \circ G} = \Sigma_H \times \Sigma_G$

$$P_{H \circ G} (\sigma, \sigma') x = P_H \sigma' (P_G \sigma x)$$

$$C_{H \circ G} (\sigma, \sigma') x t = C_G \sigma x (C_H \sigma' (P_G \sigma x) t)$$

$$(\sigma, \sigma') \in E_{H \circ G} x (k : Z \to T) \text{ iff } \sigma \in E_G x (y \mapsto C_H \sigma' y (k(P_H \sigma' y)))$$

$$\land \sigma' \in E_H (P_G \sigma x) k$$

Bring on the Category Theory!

- What was Good For You? Some things (hopefully)
 - You learned a little economic game theory
 - You learned that despite the implausibility of its existence, compositional game theory is possible
 - You learned this is non-trivial, eg new concepts needed and games/equilibria must be indexed by all possible utilities
- What was Bad For You?: If you are anything like me
 - I distrust random sequences of symbols. My eyes glaze over
 - Were these definitions correct or canonical
 - These definitions are not tractable, eg associativity

• **Definition:** A lens $(X, S) \rightarrow (Y, R)$ consists of two functions

 $P:X \to Y \text{ and } C:X \times R \to S$

- **Observations:** Some simple points
 - Objects which are pairs of sets and maps which are lenses forms a category Lens
 - A map $(1,1) \rightarrow (X,S)$ is just an element of X
 - A map $(Y, R) \rightarrow (1, 1)$ is just a function $Y \rightarrow R$
 - A game $G : (X, S) \to (Y, R)$ is a Σ -indexed family of lenses $G_{\sigma} : (X, S) \to (Y, R)$ together with, for each $\sigma \in \Sigma$ a subset $E_{\sigma} \subseteq \text{Lens}(1, 1)(X, S) \times \text{Lens}(Y, R)(1, 1)$

Composition of Games, via the Composition of Lenses

- Assume Given a game $G : \Sigma \to \text{Lens}(X, S)(Y, R)$ with equilibria E_G and one $H : \Sigma' \to \text{Lens}(Y, R)(Z, T)$ with equilibria E_H .
- **Define:** A family of lenses $H \circ G : \Sigma \times \Sigma' \to \text{Lens}(X, S)(Z, T)$ by

$$(H \circ G)(\sigma, \sigma') = (H\sigma') \circ (G\sigma)$$

• **Define:** ... and an equilibrium predicate

$$(x,k) \in E_{H \circ G}(\sigma,\sigma') \quad \text{iff} \quad (x,k \circ H\sigma') \in E_G \sigma$$
$$\land \quad (G\sigma \circ x,k) \in E_H \sigma'$$

• **Comment:** Blew my mind away, and associativity trivial!

<u>A Little More</u>

- Motivation: We have a monoidal category with 1-cells being games. Lots of string diagrams etc. But, to define games via universal properties, we need maps between games.
- Assume: Given a game $G : \Sigma \to \text{Lens}(X, S)(Y, R)$ with equilibria E_G and one $H : \Sigma' \to \text{Lens}(X', S')(Y', R')$ with equilibria E_H .
- Define A map $G \to H$ is i) a map of indexes $f : \Sigma \to \Sigma'$; and ii) lenses $\alpha : (X, S) \to (X', S')$ and $\beta : (Y, R) \to (Y', R')$ such that

$$- (\sigma \in \Sigma) \ \beta \circ G\sigma = H(f\sigma) \circ \alpha$$

$$- (\sigma \in \Sigma)(x : X)(k : Y' \to R')$$
$$(x, k \circ \beta) \in E_G \sigma \Rightarrow (\alpha \circ x, k) \in E_H(f\sigma)$$

• **Comment:** Clinical, clean, powerful and yet tractable.

Neil Ghani

- The Holy Spirit : What we have seen is an example of
 - Category Theory is the heart of Structure
 - Structure and the heart of Compositionality
 - Compositionality is how we understand the world
- Made Flesh: In our example
 - We developed compositional game theory
 - Highly implausible and rather difficult
 - And impossible without category theory to tame the complexity of computation and an aesthetic to aid discovery

- Extensions: We have also tackled
 - Infinitely Repeated Games via Final Coalgebras
 - Subgame perfection via a categorical modality
 - Mixed Strategies ... next week at ACT
- Next: Much more to do
 - More operators, more algorithms
 - Translate into better software
 - Please come and visit or join us at Strathclyde ... send me your CVs!