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The theorem

Theorem (S.)

Every Grothendieck (∞,1)-topos can be presented by a model
category that interprets homotopy type theory with:

• Σ-types, a unit type, Π-types with function extensionality, and
identity types.

• Strict universes, closed under the above type formers, ← new!
and satisfying univalence and the propositional resizing axiom.

• What do all these words mean?

• Why should I care?
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Toposes

Definition

A Grothendieck topos is a left-exact-reflective subcategory of a
presheaf category, or equivalently the category of sheaves on a site.

It shares many properties of Set, such as:

• finite limits and colimits.

• disjoint coproducts and effective equivalence relations.

• locally cartesian closed.

• a subobject classifier Ω = {⊥,>}.
An elementary topos is any category with these properties.

Basic principle

Since most mathematics can be expressed using sets, it can be done
internally to any sufficiently set-like category, such as a topos.



Internal logic

Translating into “arrow-theoretic language” by hand is tedious and
obfuscating. The internal logic automatically “compiles” a set-like
language into objects and morphisms in any topos.

formal
system

Set
E1,E2 . . .

(all toposes)

group
theory

Z G1,G2, . . .
(all groups)



From set theory to type theory

Given two sets X ,Y , in ordinary ZF-like set theory we can ask
whether X ⊆ Y . But this question is meaningless to the category
Set; we can only ask about injections X ↪→ Y . Thus we use a
type theory, where each element belongs to only one∗ type.

sets  types
x ∈ X  x : X

Syntax Interpretation in a topos E

Type A Object A of E

Product type A× B Cartesian product A× B in E

Term f (x , g(y)) : C using
formal variables x : A, y : D

Composite morphism

A× D
1×g−−→ A× B

f−→ C

Dependent type B(x)
using a variable x : A

Object B → A of E/A
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Internalizing mathematics

• Ordinary mathematics can nearly always be formalized in type
theory, and thereby internalized in any topos.

• This includes definitions, theorems, and also proofs, as long as
they use intuitionistic logic.

• Type-theoretic formalization can also be verified by a computer
proof assistant.
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Higher toposes

Kind of topos Objects behave like Prototypical example

1-topos sets Set
2-topos categories Cat

(∞, 2)-topos (∞, 1)-categories (∞, 1)-Cat
(2, 1)-topos groupoids Gpd

(∞, 1)-topos ∞-groupoids (spaces) ∞-Gpd
(n, 1)-topos (n−1)-groupoids (n−1)-Gpd

2-toposes and (∞, 2)-toposes are extra hard because:

1 They are not locally cartesian closed.

2 (−)op is hard to deal with and hard to do without.

Today: (n, 1)-toposes for 2 ≤ n ≤ ∞.
Think n =∞ or n = 2, as you prefer.



(n, 1)-toposes

Definition (Toen–Vezossi, Rezk, Lurie)

A Grothendieck (n, 1)-topos, for 1 ≤ n ≤ ∞, is an accessible∗

left-exact-reflective subcategory of a presheaf (n, 1)-category, or
equivalently the category of (n, 1)-sheaves on an (n, 1)-site∗.

It shares many properties of the (n, 1)-category of (n−1)-groupoids:

• finite limits and colimits.

• disjoint coproducts

• effective quotients of n-efficient groupoids.

• locally cartesian closed.

• a subobject classifier Ω.

• classifiers for small (n−2)-truncated morphisms.

(An elementary (n, 1)-topos should have some of the same properties. But
that definition is still negotiable; we have essentially no examples yet.)



Example #1: promoted 1-toposes

Example

Any 1-site (C, J) is also an (n, 1)-site, and any Grothendieck 1-topos
Sh1(C, J) is the 0-truncated objects in an (n, 1)-topos Shn(C, J).

Extends the “set theory” of Sh1(C, J) with higher category theory.

Example

E a small 1-topos, J its coherent top. ⇒ Sh2(E , J) a (2, 1)-topos.

1 Internal category theory in Sh2(E , J) includes indexed category
theory over E , but phrased just like ordinary category theory;
no need to manually manage indexed families.

2 The internal logic of Sh2(E , J) includes the stack semantics of
E , expanding its internal logic to unbounded quantifiers (e.g.
“there exists an object”).
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This isn’t the topos you’re looking for

Warning

Shn(C, J) is not, in general, equivalent to the (n, 1)-category of
internal (n−1)-groupoids in Sh1(C, J).

1 The former allows pseudonatural morphisms (inverts weak
equivalences).

2 When n =∞, the latter is “hypercomplete” but the former
may not be.

3 The 0-truncated objects in the latter don’t even recover
Sh1(C, J), but its exact completion.



Example #2: higher group actions

A monoid acts on sets; a monoidal groupoid acts on groupoids.

Example

The one-object groupoid BZ associated to the abelian group Z is
monoidal. A BZ-action on a groupoid G consists of, for each x ∈ G,
an automorphism φx : x ∼−→ x , such that for all ψ : x ∼−→ y in G we
have ψ ◦ φx = φy ◦ ψ.

Note that BZ cannot act nontrivially on a set; we need the
(2,1)-topos BZ-Gpd .



Example #3: orbifolds

Definition

An orbifold is a space that “looks locally” like the quotient of a
manifold by a group action.

Example

When Z/2 acts on R2 by 180◦ rotation, the quotient is a cone, with
Z/2 “isotropy” at the origin.

Where does this “quotient” take place?

• The 1-category Mfd doesn’t have such colimits.

• Sh1(Mfd) does, but they forget the isotropy groups.

• Sometimes use quotients in the (2,1)-topos Sh2(Mfd).

• Sometimes need Sh2(Orb), with Orb a (2,1)-category of
smooth groupoids.



Example #4: parametrized spectra

A spectrum is, to first approximation, an ∞-groupoid analogue of
an abelian group.

Example

The category of ∞-groupoid-indexed families of spectra is an
(∞,1)-topos.

This is some special ∞-magic: set-indexed families of abelian
groups are not a 1-topos!

“Higher-order” versions of this are used for Goodwillie calculus.
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Equality and identity

In the internal logic of a 1-topos:

• Equality is a proposition EqA(x , y) depending on x : A and
y : A, i.e. a relation EqA : A× A→ Ω.

• Semantically, the diagonal A→ A× A, which is a subobject.

In a higher topos:

• The diagonal A→ A× A is no longer monic.

• But we can regard it as a family of types: the identity type
IdA(x , y) depending on x : A and y : A.

• We call the elements of IdA(x , y) identifications of x and y .
Can think of them as isomorphisms in a groupoid.

• Everything we can say inside of type theory can be
automatically transported across any identification.



Object classifiers

Definition

An object classifier in E is a map π : Ũ → U such that pullback
E(A,U) −→ (E/A)core is fully faithful: any pullback of it is a
pullback in a unique way.

Examples

1 A 1-topos has a classifier > : 1→ Ω for all subobjects.

2 An (∞, 1)-topos has classifiers for all κ-small morphisms, for
arbitrarily large regular cardinals κ.

3 An (n, 1)-topos has classifiers for κ-small (n−2)-truncated
morphisms (e.g. Set∗

core → Setcore in Gpd).



Univalence

In type theory, an object classifier becomes a universe type U ,
whose elements are types. The full-faithfulness of
E(A,U) −→ (E/A)core becomes Voevodsky’s univalence axiom:

Univalence Axiom

For X : U and Y : U , the identity type IdU (X ,Y ) is canonically
equivalent∗ to the type of equivalences X ' Y .

Since anything can be transported across identifications, this implies
that equivalent types are indistinguishable.



Homotopy type theory

Homotopy Type Theory (HoTT)

The study of type theories inspired by this interpretation, generally
including univalence and other enhancements such as higher
inductive types.

For example:

• Book HoTT is Martin-Löf Type Theory with axioms for
univalence and higher inductive types.

• Cubical type theories are computationally adequate, with rules
instead of axioms.

However, no cubical type theories are yet known to have general
(∞,1)-topos-theoretic semantics. Today we stick to Book HoTT.



Applications of HoTT as an internal language

1 All of ordinary (constructive) mathematics can be internalized
in all higher toposes.

2 Prove theorems from homotopy theory using new techniques of
type theory, and deduce that they are true in all higher toposes.
(E.g. HFLL, ABFJ: Blakers–Massey theorems)

3 Augment HoTT with synthetic axioms or modalities to work
with special classes of higher toposes.

4 Work in higher toposes without needing simplicial sets — fully
rigorous and computer-formalizable.
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Coherence and strict equality

Problem

A higher topos is a weak higher category, with universal properties
up to equivalence. But operations in type theory obey laws up to
definitional equality.

What’s that?

There are (at least) two “senses in which” elements x and y of a
type A can be “the same”.

1 The identity type IdA(x , y), whose elements are identifications
(paths, homotopies, isomorphisms, equivalences). There can be
more than one identification between two elements, and
transporting along them can be nontrivial.

2 The definitional equality x ≡ y obtained by expanding
definitions, e.g. if f (x) := x2 then f (y + 1) ≡ (y + 1)2.
Algorithmic and unique, and transporting carries no info.
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An idea that I don’t recommend

Idea

Weaken type theory to match higher categories, e.g. omit
definitional equality.

But strictness is a big part of the advantage of type theory over
explicit arrow-theoretic reasoning. Being able to use 1 + 1 and 2
literally interchangeably is very important for our sanity. This gets
even worse in a higher category where we have not only homotopies
but higher coherence homotopies all the time!

We need strict models for actual Grothendieck (∞,1)-toposes, with
strict equalities that behave like definitional equalities.



From univalent universes to (∞, 1)-toposes

Book HoTT
free
CwF

arbitrary
CwF

constructs maps into

arbitrary
(∞, 1)-topos

model category
with universes

presented by

strict slices
of fibrations



From pseudo to strict

In the (2,1)-topos [[[Dop,Gpd]]], every pseudofunctor X : Dop → Gpd
is equivalent to a strict one. Not every pseudonatural
transformation X ù Y is equivalent to a strict X → Y , but:

Lemma

For any Y ∈ [[[Dop,Gpd]]] there is a strict CDY and a bijection
between pseudonatural X ù Y and strict X → CDY .

Proof.

A pseudonatural f : X ù Y assigns to each x ∈ X (c)

• An image fx(x) ∈ Y (c), but also

• An isomorphism γ∗(fx(x)) ∼= fx ′(γ
∗(x)) for all γ : x ′ → x in D,

• Satisfying a coherence condition.

Thus, we define CDY (c) to consist of all these data.



Coflexible objects

Definition (Blackwell-Kelly-Power)

Y is coflexible if the canonical map Y → CDY has a strict
retraction.

Lemma

If Y is coflexible, then every pseudonatural transformation X ù Y
is isomorphic to a strict one X → CDY → Y .

Idea

Interpret types as coflexible objects.

• Get a well-behaved 1-category of strict morphisms.

• Can still capture all the “pseudo information”.
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Overview

Theorem

Every Grothendieck (∞,1)-topos can be presented by a model
category that interprets homotopy type theory with strict univalent
universes.

1 Any (∞,1)-topos is a left exact localization of a presheaf one.

2 A Quillen model category of injective simplicial presheaves
presents an (∞,1)-presheaf topos, and models all of type
theory except universes.

3 Use coflexibility to characterize the injective fibrations and
build a universe for presheaves.

4 Localize internally to build a universe of sheaves.



Type-theoretic model categories

A Quillen model category E is a 1-category with structure to present
an (∞,1)-category, including (co)fibrations and weak equivalences.

If E is locally cartesian closed, right proper, and its cofibrations are
the monomorphisms, then we can interpret “types in context Γ” as
fibrations in E/Γ to model a type theory with:

• a unit type and Σ-types (fibrations contain the identities and
are closed under composition).

• Identity types (as path objects — Awodey–Warren, etc.).

• Π-types satisfying function extensionality (dependent products
preserve fibrations).



What about universes?

• In type theory, we want universes that are closed under all the
other rules.

• If κ is inaccessible, the κ-small morphisms are closed under
everything.

• But, the classifier of κ-small morphisms in an (∞,1)-topos only
classifies them up to equivalence!

• We need a fibration π : Ũ → U in a model category that
classifies κ-small fibrations by 1-categorical pullback.



Universes in presheaves

Definition

If E = [[[Cop,Set]]] is a presheaf category, define a presheaf U where

U(c) =
{
κ-small fibrations overよc = C(−, c)

}
.

Functorial action is by pullback.

This takes a bit of work to make precise:

• U(c) must be a set containing at least one representative for
each isomorphism class of such κ-small fibrations.

• Chosen cleverly to make pullback strictly functorial.



Universes in presheaves, II

Similarly, we can define Ũ to consist of κ-small fibrations equipped
with a section. We have a κ-small projection π : Ũ → U .

Theorem

Every κ-small fibration is a pullback of π.

But π may not itself be a fibration! All we can say is that its
pullback along any map x :よc → U , withよc representable, is a
fibration (namely the fibration that “is” x ∈ U(c)).

It works if the generating acyclic cofibrations have representable
codomain (e.g. Voevodsky’s simplicial set model), but in general we
can’t assume that.



Injective model structures

S = simplicial sets, D = a small simplicially enriched category.

Theorem

The category [[[Dop,S]]] of simplicially enriched presheaves has an
injective model structure such that:

1 The weak equivalences are pointwise.

2 The cofibrations are pointwise, hence are the monomorphisms
in [[[Dop,S]]].

3 It is locally cartesian closed and right proper.

4 It presents the (∞,1)-category of (∞,1)-presheaves on the
small (∞,1)-category presented by D.

So it models everything but universes.
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Understanding injective fibrancy

When is X ∈ [[[Dop,S]]] injectively fibrant? We want to lift in

A X

B

i ∼

g

where i : A→ B is a pointwise acyclic cofibration.
If X is pointwise fibrant, then for all d ∈ D we have a lift

Ad Xd

Bd

id ∼

gd

hd

but these may not fit together into a natural transformation B → X .



Naturality up to homotopy

Naturality would mean that for any δ : d1 → d2 in D we have
Xδ ◦ hd2 = hd1 ◦ Bδ. This may not hold, but we do have

Xδ ◦ hd2 ◦ id2 = Xδ ◦ gd2 = gd1 ◦ Aδ = hd1 ◦ id1 ◦ Aδ = hd1 ◦ Bδ ◦ id2 .

Thus, Xδ ◦ hd2 and hd1 ◦ Bδ are both lifts in the following:

Ad2 Xd1

Bd2

id2 ∼

Since lifts between acyclic cofibrations and fibrations are unique up
to homotopy, we do have a homotopy

hδ : Xδ ◦ hd2 ∼ hd1 ◦ Bδ.



Coherent naturality

Similarly, given d1
δ1−→ d2

δ2−→ d3, we have a triangle of homotopies

Xδ2δ1 ◦ hd3 hd1 ◦ Bδ2δ1

Xδ2 ◦ hd2 ◦ Bδ1

hδ1

hδ2δ1

hδ2

whose vertices are lifts in the following:

Ad3 Xd1

Bd3

id3 ∼

Thus, homotopy uniqueness of lifts gives us a 2-simplex filler.



The coherent morphism coclassifier

Conclusion

If X is pointwise fibrant, then any lifting problem

A X

B

∼

is “solved” by some homotopy coherent natural transformation.

For X to be injectively fibrant, need to be able to replace this by a
strict natural transformation.



Coflexibility again

Fact

For any X ∈ [[[Dop,S]]] there is a cobar construction CD(Y ) and a
bijection between homotopy coherent transformations X ù Y and
strict ones X → CD(Y ).

Definition

X is coflexible if the canonical map X → CDX has a strict
retraction.

In this case, any homotopy coherent transformation B ù X is
homotopic to a strict one B → CDX → X .



Injective fibrations

Theorem

X ∈ [[[Dop,S]]] is injectively fibrant if and only if it is pointwise fibrant
and coflexible.

More generally, any f : X → Y can be factored by pullback:

X

CDf CDX

Y CDY

f y

Theorem

f : X → Y is an injective fibration if and only if it is a pointwise
fibration and the map X → CDf has a retraction over Y .



Semi-algebraic fibrations

Definition

A semi-algebraic injective fibration is a map f : X → Y with

1 The property of being a pointwise fibration, and

2 The structure of a retraction for X → CDf .

Now define U ∈ [[[Dop,S]]] (and similarly Ũ and π : Ũ → U):

U(d) =
{
κ-small semi-algebraic injective fibrations overよd

}
.

Theorem

π : Ũ → U is a (semi-algebraic) injective fibration.

Proof.

Glue together the semi-algebraic structures over eachよd .



Sheaf universes

Given a left exact localization LS[[[Dop,S]]]:

1 Using a technical result of Anel–Biedermann–Finster–Joyal
(2019, forthcoming), we can ensure that left exactness of
S-localization is pullback-stable.

2 Then for any f : X � Y we can construct in the internal type
theory of [[[Dop,S]]] a fibration isLocalS(f )� Y .

3 Define a semi-algebraic local fibration to be a semi-algebraic
injective fibration equipped with a section of isLocalS(f ).

4 Now use the same approach.



The theorem, again

Theorem (S.)

Every Grothendieck (∞,1)-topos can be presented by a model
category that interprets homotopy type theory with:

• Σ-types, a unit type, Π-types with function extensionality, and
identity types.

• Strict universes, closed under the above type formers,
and satisfying univalence and the propositional resizing axiom.

What’s next?

• These model categories have higher inductive types too; are the
universes closed under them?

• Can we construct any non-Grothendieck higher toposes?

• Can cubical type theories also be interpreted in higher toposes?
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