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The stage

● Linux is widely deployed as an OpenAFS client platform

● Many large OpenAFS sites rely heavily on Linux on both 
servers and clients

● The OpenAFS Linux client includes a kernel module

– Sensitive to kernel changes



  

The battle

● Linux perspective

– All useful drivers and modules are in-tree, or should be in the 
tree

– Changing the module API/ABI is not a problem – in-tree code is 
adapted as part of the change

● OpenAFS perspective

– Can't join the party – incompatible license

– Must adapt on its own, can't benefit from kernel developers

– Can't have all the goodies - part of the API is out of reach



  

Since Oct 2006

● 28 kernel releases (2.6.19 – 3.6)

– 292 876 commits

– 17 216 184 lines changed in 49 983 files
● Estimate of > 100 OpenAFS commits linked directly or closely 

to kernel changes

● Kernel releases with no impact on OpenAFS:

0



  

Linux development process

● Fast

– New release every ~3 months

– No fixed schedule, released when it's ready

– .. but fairly consistent

● Fast moving

– Thousands of commits per release

– Tens of thousands of lines of code changed

● Big

– Close to 1000 developers involved in each release

– Heavy corporate participation



  

The code

● Linux releases are cut directly from “mainline” - master branch 
of Linus' tree

● 2 week merge window per cycle

– Followed by ~10 weeks of fixes and stabilization over 6-9 RC 
releases

● Stable releases are handled by separate maintainers, in 
separate trees

– Many active stable releases in parallel

– Some releases are tagged as long term



  

linux-next

● Tree for integration testing

● Contains code targeted for next release cycle

– Most, but not all subsystems

● Rebuilt from scratch daily – expensive to follow

● Not all code in -next will make it to mainline in the following 
cycle

● Not all code will show up in -next before hitting mainline



  

How we try to keep up

● Continuously run kernels very close to mainline

● Follow linux-kernel, linux-fsdevel discussions and patches

– particular attention to vfs layer

– .. and other related lists

● Frequent builds and tests of current OpenAFS master



  

How we try to keep up

● Keep an eye out for new warnings

– Often a symptom of an API/ABI change

● Do real testing

– Not all changes can be detected at compile time

● Keep an eye on the VFS tree

● Occasional test of linux-next



  

The result

● OpenAFS master supports most Linux kernel releases before 
they're released

– Usually early in the RC cycle

● But stable releases are a challenge

– There's a speed mismatch

● .. and getting these changes to distributions is also challenge

– Schedules are not in sync

– Many have custom patches or packaging



  

The fixes

● Some fixes are mostly mechanical

● Typical case :

– A new configure test to identify a new behaviour

– Conditional code (ifdefs) to do things the new way

– In some cases, new compatibility helpers to hide the ifdef maze

● Even when the fix is trivial, it may need a lot of packaging

● Unfortunately many changes require more analysis



  

Challenges

● VFS changes are often merged late in the cycle

– Better lately

● Many VFS changes appear in mainline with little notice

● Compatibility with older releases

– Risk of breaking support for an older kernel

– Impossible to test everything

– Use mitigating strategies for configure tests

● Sprawling feature tests

– make -j 16 all = 14.7s

– ./configure  =  80.7s



  

More challenges

● Keeping the code manageable and readable

– Keep ifdef jungle under control

● Distributions

– Have their own schedule, packaging, custom patches, bug 
reporting, maintainers

● Shrinking API

– Many useful debug features are off limits – ex: lockdep

– Can't support RT kernel, Fedora rawhide, etc

– So far core functionality has been spared



  

Highlights



  

Syscall table

● OpenAFS relied on modifying the syscall table to hook the 
setgroups call and preserve PAGs

● In the early 2.6 kernels, the syscall table was unexported and 
made read-only

● The new “keyring” feature is now used to implement PAGs 
internally

● Special PAG groups are still set for legacy reasons – they are 
no longer used to determine PAG membership



  

Inode abstraction

● Client keeps references to disk cache files so it can quickly 
open them as needed

● Traditional reference on Unix systems was the inode number

● On Linux, some filesystems can't guarantee stable inode 
numbers

– Problem reports (xfs, reiserfs) led to filesystem restrictions in afsd 
(ext2/3)

● Linux 2.6.25: the API to open a file by inode number is no 
longer available



  

Inode abstraction

● Solution: exportfs interface

– Linux API to get a stable opaque file handle from the filesystem, 
and later use it to open the file

– Used by NFSD – supported by all exportable filesystems

● Implemented progressively

– Minimal change in 1.4 to deal with 2.6.25; create our own inode 
number based handles for ext2/3

– Later, call filesystems to generate handles

– Finally, extend method to pre-2.6.25 kernels

● Side benefit: any exportable filesystem can now be used



  

Linux 3.0

● Numbering change – no major new feature
● Impact limited to the build system, packaging
● Some discussion about default sysname 

values



  

Credentials

● Internal kernel handling of security credentials has evolved

– Separate structure with a pointer in the task struct

– RCU based change mechanism

– Support for new security subsystems – selinux, etc.

● OpenAFS changes

– Use the new cred structure directly, instead of rolling our own

– Open cache files with the initial cache manager credentials – 
resolves issues for systems with selinux and AppArmor



  

aklog -setpag

● Stopped working at some point – a process was not allowed to 
change its parent's credentials

● .. but a new syscall now allows a process to set a keyring in its 
parent

● Currently works for recent kernels



  

BKL

● “Big Kernel Lock” - global kernel wide lock

● Gradually replaced by more granular locking, RCU

● Last bits removed in kernel 2.6.39

● By that time, OpenAFS master was mostly BKL free

– .. but making 1.4 safe for BKL removal would have been invasive

– EOL for new kernel support in 1.4



  

RCU based path walking

● Major VFS change to reduce lock contention by relying on RCU 
where possible

● Requires that several VFS callbacks don't sleep

– But most OpenAFS callbacks take the global lock (GLOCK), and 
can sleep

● Fallback mechanism

– filesystems can indicate that they don't support RCU path walking

– VFS calls back with locks taken

● Significant locking changes (ex: no more dcache_lock)



  

RCU path walking

● For OpenAFS

– Return appropriate error codes to trigger the fallback to locking 
mode

– Rework locking

– Resulted in a few hard to diagnose bugs where some configure 
tests caused the VFS to think we supported RCU mode



  

IMA

● Integrity Measurement Architecture, activated in Fedora and 
Red Hat Enterprise kernels

● Hooks into file opens and closes, issues warning for close with 
no corresponding open

● API was unbalanced

– Close implicitely called IMA

– Caller had to call IMA for some opens – ex: dentry_open used by 
OpenAFS

– But... IMA calls are GPL only and not accessible to OpenAFS

● Bottom line: impossible to use the API correctly and avoid the 
flood of syslog warnings



  

IMA

● All (eventually) ended well

– API reworked in kernel mainline

– Backported in time for RHEL 6 release, with customer 
pressure

– Affected Fedora reached EOL



  

Exportfs API

● OpenAFS relies on this API for two uses

– Tracking and opening disk cache files

– Exporting AFS files via the NFS translator

● Many revisions to this API over the past few years, some major

● Translator no longer supported – requires GPL only symbols



  

Looming changes

● vmtruncate

● Kernel and module signing, secure boot

● ...



  

As of today..

● 3.4 support in official 1.6.1 release

● 3.5 and 3.6 support in master and 1.6 branch

● 3.7 currently still in merge window

● 3.7 RC1 imminent

● 3.7 support looking good 

● until...



  

Commit:     8e377d15078a501c4da98471f56396343c407d92

Author:     Jeff Layton <jlayton@redhat.com>

    vfs: unexport getname and putname symbols

    I see no callers in module code.

---

 fs/namei.c |    2 --

 1 files changed, 0 insertions(+), 2 deletions(-)

diff --git a/fs/namei.c b/fs/namei.c

index ca14d84..9cc0fce 100644

--- a/fs/namei.c

+++ b/fs/namei.c

@@ -163,7 +163,6 @@ void putname(const char *name)

        else

                __putname(name);

 }

-EXPORT_SYMBOL(putname);

 #endif

 static int check_acl(struct inode *inode, int mask)

@@ -3964,7 +3963,6 @@ EXPORT_SYMBOL(follow_down_one);

 EXPORT_SYMBOL(follow_down);

 EXPORT_SYMBOL(follow_up);

 EXPORT_SYMBOL(get_write_access); /* nfsd */

-EXPORT_SYMBOL(getname);

 EXPORT_SYMBOL(lock_rename);

mailto:jlayton@redhat.com


  

Thanks!
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