
  

Linux Kernel Evolution

vs 

OpenAFS

Marc Dionne
Edinburgh - 2012



  

The stage

● Linux is widely deployed as an OpenAFS client platform

● Many large OpenAFS sites rely heavily on Linux on both 
servers and clients

● The OpenAFS Linux client includes a kernel module

– Sensitive to kernel changes



  

The battle

● Linux perspective

– All useful drivers and modules are in-tree, or should be in the 
tree

– Changing the module API/ABI is not a problem – in-tree code is 
adapted as part of the change

● OpenAFS perspective

– Can't join the party – incompatible license

– Must adapt on its own, can't benefit from kernel developers

– Can't have all the goodies - part of the API is out of reach



  

Since Oct 2006

● 28 kernel releases (2.6.19 – 3.6)

– 292 876 commits

– 17 216 184 lines changed in 49 983 files
● Estimate of > 100 OpenAFS commits linked directly or closely 

to kernel changes

● Kernel releases with no impact on OpenAFS:

0



  

Linux development process

● Fast

– New release every ~3 months

– No fixed schedule, released when it's ready

– .. but fairly consistent

● Fast moving

– Thousands of commits per release

– Tens of thousands of lines of code changed

● Big

– Close to 1000 developers involved in each release

– Heavy corporate participation



  

The code

● Linux releases are cut directly from “mainline” - master branch 
of Linus' tree

● 2 week merge window per cycle

– Followed by ~10 weeks of fixes and stabilization over 6-9 RC 
releases

● Stable releases are handled by separate maintainers, in 
separate trees

– Many active stable releases in parallel

– Some releases are tagged as long term



  

linux-next

● Tree for integration testing

● Contains code targeted for next release cycle

– Most, but not all subsystems

● Rebuilt from scratch daily – expensive to follow

● Not all code in -next will make it to mainline in the following 
cycle

● Not all code will show up in -next before hitting mainline



  

How we try to keep up

● Continuously run kernels very close to mainline

● Follow linux-kernel, linux-fsdevel discussions and patches

– particular attention to vfs layer

– .. and other related lists

● Frequent builds and tests of current OpenAFS master



  

How we try to keep up

● Keep an eye out for new warnings

– Often a symptom of an API/ABI change

● Do real testing

– Not all changes can be detected at compile time

● Keep an eye on the VFS tree

● Occasional test of linux-next



  

The result

● OpenAFS master supports most Linux kernel releases before 
they're released

– Usually early in the RC cycle

● But stable releases are a challenge

– There's a speed mismatch

● .. and getting these changes to distributions is also challenge

– Schedules are not in sync

– Many have custom patches or packaging



  

The fixes

● Some fixes are mostly mechanical

● Typical case :

– A new configure test to identify a new behaviour

– Conditional code (ifdefs) to do things the new way

– In some cases, new compatibility helpers to hide the ifdef maze

● Even when the fix is trivial, it may need a lot of packaging

● Unfortunately many changes require more analysis



  

Challenges

● VFS changes are often merged late in the cycle

– Better lately

● Many VFS changes appear in mainline with little notice

● Compatibility with older releases

– Risk of breaking support for an older kernel

– Impossible to test everything

– Use mitigating strategies for configure tests

● Sprawling feature tests

– make -j 16 all = 14.7s

– ./configure  =  80.7s



  

More challenges

● Keeping the code manageable and readable

– Keep ifdef jungle under control

● Distributions

– Have their own schedule, packaging, custom patches, bug 
reporting, maintainers

● Shrinking API

– Many useful debug features are off limits – ex: lockdep

– Can't support RT kernel, Fedora rawhide, etc

– So far core functionality has been spared



  

Highlights



  

Syscall table

● OpenAFS relied on modifying the syscall table to hook the 
setgroups call and preserve PAGs

● In the early 2.6 kernels, the syscall table was unexported and 
made read-only

● The new “keyring” feature is now used to implement PAGs 
internally

● Special PAG groups are still set for legacy reasons – they are 
no longer used to determine PAG membership



  

Inode abstraction

● Client keeps references to disk cache files so it can quickly 
open them as needed

● Traditional reference on Unix systems was the inode number

● On Linux, some filesystems can't guarantee stable inode 
numbers

– Problem reports (xfs, reiserfs) led to filesystem restrictions in afsd 
(ext2/3)

● Linux 2.6.25: the API to open a file by inode number is no 
longer available



  

Inode abstraction

● Solution: exportfs interface

– Linux API to get a stable opaque file handle from the filesystem, 
and later use it to open the file

– Used by NFSD – supported by all exportable filesystems

● Implemented progressively

– Minimal change in 1.4 to deal with 2.6.25; create our own inode 
number based handles for ext2/3

– Later, call filesystems to generate handles

– Finally, extend method to pre-2.6.25 kernels

● Side benefit: any exportable filesystem can now be used



  

Linux 3.0

● Numbering change – no major new feature
● Impact limited to the build system, packaging
● Some discussion about default sysname 

values



  

Credentials

● Internal kernel handling of security credentials has evolved

– Separate structure with a pointer in the task struct

– RCU based change mechanism

– Support for new security subsystems – selinux, etc.

● OpenAFS changes

– Use the new cred structure directly, instead of rolling our own

– Open cache files with the initial cache manager credentials – 
resolves issues for systems with selinux and AppArmor



  

aklog -setpag

● Stopped working at some point – a process was not allowed to 
change its parent's credentials

● .. but a new syscall now allows a process to set a keyring in its 
parent

● Currently works for recent kernels



  

BKL

● “Big Kernel Lock” - global kernel wide lock

● Gradually replaced by more granular locking, RCU

● Last bits removed in kernel 2.6.39

● By that time, OpenAFS master was mostly BKL free

– .. but making 1.4 safe for BKL removal would have been invasive

– EOL for new kernel support in 1.4



  

RCU based path walking

● Major VFS change to reduce lock contention by relying on RCU 
where possible

● Requires that several VFS callbacks don't sleep

– But most OpenAFS callbacks take the global lock (GLOCK), and 
can sleep

● Fallback mechanism

– filesystems can indicate that they don't support RCU path walking

– VFS calls back with locks taken

● Significant locking changes (ex: no more dcache_lock)



  

RCU path walking

● For OpenAFS

– Return appropriate error codes to trigger the fallback to locking 
mode

– Rework locking

– Resulted in a few hard to diagnose bugs where some configure 
tests caused the VFS to think we supported RCU mode



  

IMA

● Integrity Measurement Architecture, activated in Fedora and 
Red Hat Enterprise kernels

● Hooks into file opens and closes, issues warning for close with 
no corresponding open

● API was unbalanced

– Close implicitely called IMA

– Caller had to call IMA for some opens – ex: dentry_open used by 
OpenAFS

– But... IMA calls are GPL only and not accessible to OpenAFS

● Bottom line: impossible to use the API correctly and avoid the 
flood of syslog warnings



  

IMA

● All (eventually) ended well

– API reworked in kernel mainline

– Backported in time for RHEL 6 release, with customer 
pressure

– Affected Fedora reached EOL



  

Exportfs API

● OpenAFS relies on this API for two uses

– Tracking and opening disk cache files

– Exporting AFS files via the NFS translator

● Many revisions to this API over the past few years, some major

● Translator no longer supported – requires GPL only symbols



  

Looming changes

● vmtruncate

● Kernel and module signing, secure boot

● ...



  

As of today..

● 3.4 support in official 1.6.1 release

● 3.5 and 3.6 support in master and 1.6 branch

● 3.7 currently still in merge window

● 3.7 RC1 imminent

● 3.7 support looking good 

● until...



  

Commit:     8e377d15078a501c4da98471f56396343c407d92

Author:     Jeff Layton <jlayton@redhat.com>

    vfs: unexport getname and putname symbols

    I see no callers in module code.

---

 fs/namei.c |    2 --

 1 files changed, 0 insertions(+), 2 deletions(-)

diff --git a/fs/namei.c b/fs/namei.c

index ca14d84..9cc0fce 100644

--- a/fs/namei.c

+++ b/fs/namei.c

@@ -163,7 +163,6 @@ void putname(const char *name)

        else

                __putname(name);

 }

-EXPORT_SYMBOL(putname);

 #endif

 static int check_acl(struct inode *inode, int mask)

@@ -3964,7 +3963,6 @@ EXPORT_SYMBOL(follow_down_one);

 EXPORT_SYMBOL(follow_down);

 EXPORT_SYMBOL(follow_up);

 EXPORT_SYMBOL(get_write_access); /* nfsd */

-EXPORT_SYMBOL(getname);

 EXPORT_SYMBOL(lock_rename);

mailto:jlayton@redhat.com


  

Thanks!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

