An Empirical Model for Predicting Cross-Core
Performance Interference on Multicore Processors

Jiacheng Zhao
Institute of Computing Technology, CAS

In Conjunction with Prof. Jingling Xue,
UNSW, Australia

Sep 11, 2013

>

Problem — Resource Utilization in Datacenters

= How?

2013/9/11

1007

80f

Time (%)

20r

60r

40t

Figure 1: Server Utilization Histogram. Real data

T
[IWeb2.0

ﬂlnL.ﬁ-_gg

10 20 30 40 50 60 70 80 90 100
Utilization (%)

centers are under 20% utilized.

ASPLOS'09 by David Meisner+

>

==

Problem — Resource Utilization in Datacenters

- Co-located applications

Appllcatlons

Core Core

» Contention for shared cache, shared IMC, etc.

> Negative and unpredictable interference

Two types of applications

Y

» Batch — No QoS guarantees
» Latency Sensitive - Attain high QoS

Shared Cache

‘ Memory Controller \

> Co-location is disabled

> Low server utilization

Lacking the knowledge of interference

A\

2013/9/11

>

Problem — Resource Utilization in Datacenters

Co-located applications

Y

> Contention for shared cache, shared IMC, etc. | sox
c 70%
> Negative and unpredictable interference 2 con
Eﬂk‘-ﬂ% F
5 . 40%
» Two types of applications
E 30%
» Batch — No QoS guarantees £ 2%
10% -+
> Latency Sensitive - Attain high QoS 0% - -
TEgc g S9E B8sEpef2 v uQEEE25
. . . s 5o % EISE a2 EEEL EEZGE gnle
» Co-location is disabled YNsY 38R YSB8206828E8 53485
= = = ; ﬁ 2 = : E =< =t ﬁ =
> Low server utilization T T

A\

Lacking the knowledge of interference

2013/9/11

>

[Micro’1l by Jason Mars+]

Problem — Resource Utilization in Datacenters

- Co-located applications

» Contention for shared cache, shared IMC, etc. OO0 .-O q

» Negative and unpredictable interference

Two types of applications

Y

» Batch — No QoS guarantees
» Latency Sensitive - Attain high QoS

> Co-location is disabled

> Low server utilization

Lacking the knowledge of interference

Y

Figure: Task placement in datacenters

2013/9/11

Our Goals: Predicting the interference

A\

Quantitatively predict the cross-core performance interference

Applicable for arbitrarily co-locations

A\

Identify any “safe” co-locations

Y

Deployable for datacenters

Y

2013/9/11

Our Intuition — Mining a model from large training data

Application | Co-Runners | A.s Performance Degradation
Al Wa, .1 FDA W,
Aq Wa,.0 Flla, w Ay.0
Ao W oas.1 Fl Ay wa,
As Was.Q Flla, w A2.Q

v Using machine learning approaches

2013/9/11

Motivation example

Cache/BW-Bound

Performance degradation

Cache-Bound

0.485P,,, + 0.183P,chne — 0.138, if Py, < 3.2
PDpes = 1 0.706Pp,, + 1.725Peqehe — 0.220,if 3.2 < Py, < 9.6
0.907P,,, + 3.087P.gche — 0.561, if Py, > 9.6

2013/9/11

Outline

> Our Key Observations

> Our Approach — Two-Phase Approach

- Experimental Results

> Conclusion

2013/9/11

>

Our Key Observations

- Observation 1: The function depends only on the pressure on shared

resources, regardless of individual pressures from one co-runner.

For an application A, PD, = f(P_.cher Pow)

(Pcachel wa) = g(A1,A2,...,Am)

2013/9/11

Our Key Observations

> Observation 2:

» The function f is piecewise.

2013/9/11

Performance degradation

3
=

30%-

BW-Bound

Cache/BW-Bound

Cache-Bound

>

Our Key Observations

» Naively, we can create A’s prediction model using brute-force approach

> BUT, we can NOT apply brute force approach for each application!

» Thousands of applications in one datacenter
> Frequent software updates
> Different generations of processors

> Even steps for one application is expensive

> Observation 3:

> The function form is platform-dependent and application independent

» Only the coefficients are application-dependent

2013/9/11

Outline

- Our Approach - Two-Phase Approach

- Experimental Results

> Conclusion

2013/9/11

Our Approach - Two-Phase Approach

>

Phase 1: Get the abstract model

> Find a function form best suitable for
all applications on a given platform

Co-running
Trainer

Applications

» Heavy - many training workloads

» Run once for one platform

a11Ppw + a12Pcqcne + a13, Subdomainl
PD =< a,1Pyy + a22Pcgche + A3, Ssubdomain?
az1Ppw + a32Pcqcne + 33, Subdomain3

2013/9/11

Phase 2: Instantiate the abstract model

> Determine the application-specific
coefficients (all, etc.)

Application Trainer

> Light-weighted, with a small humber of
trainings
» Run once for one application

0.49Py,, + 0.18P.;cpne — 0.13, Py, < 3.2
0.71P,,, + 1.73P.4che — 0.22, others
0.91Py,, + 3.09P.;,cne — 0.56, Py, > 9.6

PDme =

Our Approach - Two-Phase Approach

2013/9/11

Application-Independent

Incatmn
Warehc:us.e

e

_'E' ol

Feature F_E'_-E tu_r_éh\
Extractor g}ita baaeﬂ/

Training 5el Generator

v

REun once on

each platform Co-Running Trainer

v

Abstract Model Creator

Run once for

each app pliL.ﬂiun

Application-Dependent

/-"' Light-Weight
Input: Trainer For A

\pllcatlun A N Feature

— Extractor

Abstract Model
Instantiator

'

——

<‘DT.J‘_rﬁJt: performance
__Predictor for A___

Our Approach - Two-Phase Approach

Q1: What are

selected as
application features

Application-Independent

pplication Feature Feature ™,
Warehouse Extractor Data ba&eﬁ/

T L

——— -

Training Set Generator

Run once on +
each platform Co-Running Trainer

v
Abstract Model Creator

2013/9/11

Run once for

Application-Dependent

each application
/—/_—__h A'I Light-Weight
Input: Trainer For A ~\' Abstract Model
Qplicatiun A, Faature \%
_— > Extractor
'

<‘0u7rﬁ.lt: Performance
__Predictor for A___

—_—

Q3: What's the
cost of the
training?

Our Approach — Some Key Points

> Q1: What are selected as application features?

» Runtime profiles
» Shared cache consumption

» Bandwidth consumption

2013/9/11

>

L2LinesIn Rate (Millions of Cache
Lines per Second)

B L2Linesin Rate —@=Performance Degradation
1 R

=
T

=
L

=
P

=
[

=

Co-Running Workloads from SPEC2006

Performance Degradation

Our Approach — Some Key Points

» QZ2: How to create the abstract model?

Application | Co-Runners | A.s Performance Degradation

» Regression analysis A Wa 1 PDA Wa 4
» Configurable LR Wi PA Wa, g
Az Wasa Pl Ay wa, o

» Each configuration
A3 Wa,.q Flaswa, o

binding to a function form

» Searching for the best function form for all applications in the training set

#Acorecation
#Pre-Processing: none/exp(pVlog(p)/pow(p)
#Mode: add/mul
#Domain Partitioning: (shared-resource,. conditiony), ...

#Function: linear/polynomial(p)user-defined

2013/9/11

Our Approach — Some Key Points

> Q3: What's the cost of the training when instantiation

» Cover all sub-domains of the piecewise function, say S

» Constant points for each sub-domain, say C

» The constant depends on the form of abstraction model

> C*S training runs in total

» Usually C and S are small, our experience: C=4, S=3

2013/9/11

Outline

- Experimental Results

> Conclusion

2013/9/11

Experimental Results

» Accuracy of our two-phase regression approach
> Prediction precision
» Error analysis
» Deployment in a datacenter
» Utilization gained
» QoS enforced and violated

2013/9/11

Experimental Results

» Benchmarks:

> SPEC2006

> Nine real-world datacenter applications

> Nlp-mt, openssl, openclas, MR-iindex, etc.

> Platforms:

> Intel quad-core Xeon E5506 (main)
> Datacenter:

> 300 quad-core Xeon E5506

2013/9/11

Some Predictor Function

2013/9/11

0.108* Py +0.484%P aene 10.003 (Ppw < 3.2)

400.perlbench| 0.115%Phy+0.460*Peuche+0.001 | (3.2 <= Ppy <= 9.6)
0.176% Py ~0.336*P y0.-0.026 (Phy = 9.6)
0.422%P;, +1.337*P_,.1.-0.007 (Ppy < 3.2)

401.bzip2 | 0.438*Pp,+0.714*Pyore 10018 | (3.2 <= Py == 9.6)
0.445% Py, +1.240%*P uope-0.046 (Ppw > 9.6)
- (Pow < 3.2)

433.mile | 0.403*Ppy+0.752*%Peache-0.154 | (3.2 <= Py, <= 9.6)
0.935%Py,,+1.124*P ,4,.-0.719 (Phw = 9.6)
0.093*Ppy+0.430#*Paene-0.015 (Pyw < 3.2)

435.gromacs| . 129%Py,+0.405*Pecne-0.028 | (3.2 <= Py, <= 9.6)
0.154%Ppy+0.297*Peacne-0.033 (Ppy = 9.6)
0.355%Phy+2.044%P yee—0.080 (Ppw < 3.2)

471.omnetpp | 0.648%Ppy+1.280%Peache-0.126 | (3.2 <= Py, <= 9.6)
(0.843%Ppy+1.012%Pyope—0.222 (Phw = 9.6)

Prediction precision for SPEC Benchmarks

>

c
2
el
©
o
©

(]
Q
o
c
1]

=
Lo

-
)]
(=

80%
70%
60%

E"’ 50%

40%
30%
20%
10%

0%

M Real M Predicted

Workload ID

> Prediction Error: Average 0.2%, from 0.0% to 8.6%.

2013/9/11

Prediction precision for datacenter applications

>

» 15 workloads for each datacenter applications

Performance Degradation

25%

20%

15%

10%

5%

0%

maxflow

M Real

nlp-mt

M Predicted

openclas

MR-ANN

> Prediction Error: Average 0.3%, from 0.0% to 5%.

2013/9/11

Error Distribution

(1.00% >
(-1.00%)

4.00%

3.00%

2.00%

0.00%

-2.00%

-3.00%

2013/9/11

4.00%

Error Distribution

Prediction Efficiency

> Precision

» Two-Phase:
0.0~11.7%, Average: 0.40%
> Brute-Force

0.0~10.1%, Average: 0.23%

- Efficiency

» co-running: ~200 > 12

2013/9/11

< 30%

tio
~
o
X

(T

60%

radati

g
Ul
o
X

40%
30%
20%
10%

0%

Performance De

M Real M Two-Phase M Brute-Force

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Workload ID

>

Benefits of piecewise predictor functions

BW-Bound

2
S

54
<
S

Performance degradation

2013/9/11

Benefits of piecewise predictor functions

¥ Predicted (Non-Piecewise)

M Predicted (Piecewise)

M Real

T T
® B2 B E R =
(en] (ew] (en] o (e»] o
[Ng)] <t (9] N —

uoljepeasa 9duew.io}idd

1S3 LEY
" emMq Ol
"e|ex E8Y

0JU0}'S9t

0juU0} S9¥
duals'gst

**|dos oSy
REIA R £l

..._Qom.omq

3ualsgsy

|dos 05t
e

...>OQ.mm.q

PW6LY

“elexegy
WY 9sY

=TA Al
...>OQ.mm.q
TSIl LEY
+1082°9¢ Y

2013/9/11

>

Deployment in a datacenter

> 300 quad-core Xeon S oy
» 1200 tasks when fully occupied § igi
. Applications § 2o% I I |
N Latency SenSitive: Nlp-mt i 0% baselineI 99% | 98% | 96% | 94% | 90% |
> machine translation QoS Policy
» 600 dedicated cores, 2/chip
> Batch job T oS Violated 19 2%
> 600 tasks, kmeans, MR E 400 Eggg::;f::ed; Po ...
> Our Purpose g 200 e N NN
» QoS policy . . |
» Issue batch jobs to idle cores 99% 98% 6% oa5 oy
QoS Policy

2013/9/11

»Cross-platform applicability @

> Six-core Intel Xeon

M Real M Predicted

80%

D
o
X

IS
o
X

Performance Degradation

N
o
X

0% -
1 6 11 16 21 26 AVG
Workload ID

> Prediction Error: Average 0.1%, range from 0.0% to 10.2%

2013/9/11

Performance Degradation

40%

30%

20%

10%

0%

»Cross-platform applicability @

> Quad-core AMD

M Real M Predicted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 AVG
Workload ID

> Prediction Error: Average 0.3%, range from 0.0% to 5.1%

2013/9/11

Outline

> Conclusion

2013/9/11

>

Conclusion

- An empirical model, based on our key observations

- Using aggregated resource consumptions to create the predictor function, thus

working for arbitrarily co-locations
. Piecewise is reasonable and effective

- Breaking the model creation into two phases, for efficiency

2013/9/11

111111111

Backup slides

» How to make the training set representative?

» Partition the space into grids

» Sample for each grid

2013/9/11

P-;:uuhl: "

S 5 el
: : : : ‘e Y
e L} “".‘.".:‘.‘“:“l‘"‘
: ; : : * A R B
RSOSSN ISR SRR XY RN AL LRSI LI 38
. . : [. : * W - i
P 1:' *‘E“: N '-' E::' -Eu ;l 5"' ;‘”‘ ¥ "
: oY, e : ::{ w B :
TURERE R PRUTERARR TR T L Do PR r-:---;:«t-.f-'-- TER 2 PRORE i
R I RN LG IR A
o Nt P g e VY . " . ide,:
“ti".':¢{‘:{"h.;1£;*:hlﬂt.;¢',":‘l' 5',‘;-‘*
. . Ve o et AP W T Lot
3 Yir: BAECE AN AR R IR WIS,
i.,'...m. ‘1*%’#:‘;'.';""!‘*“1‘“
- * .
POF AP S R et SN Wt e
‘«ﬁ.j_"i"l{h L c:"' 'r' h': ‘. ¢ . ! o 'y
".il't' . 'ﬁ *i*#‘.* “
(L P A
T8Y IOREREE PR TRREE T T A
¢ :
o
B T T e S P P
-
P

Backup slides

» How to do domain partitioning?
» Specified in configuration file
> Syntax: (shared resource;, condition), e.g. (P,,, equal(4))

» Empirical knowledge to perform this task

HAggregation

HPre-Processing: none, exp(2), log(2), pow(2)

H#mode: add, mul
#Domain Partitioning: {((Pbw), equal4)), (Pcache), equak4)), ((Pcache, Pbw), equal4, 4))},
#Function: linear, polynomial(2)

2013/9/11

Backup slides

> Two sources of error:

> Estimation for shared resources

consumption

» L2 Linesln

» Phase behavior of applications

Memory Bandwidth (GB/s)

0 100 200 300 400 500

Time Interval

2013/9/11

