
An Empirical Model for Predicting Cross-Core
Performance Interference on Multicore Processors

Jiacheng Zhao

Institute of Computing Technology, CAS

In Conjunction with Prof. Jingling Xue,

UNSW, Australia

Sep 11, 2013

Problem – Resource Utilization in Datacenters

 How?

2013/9/11

ASPLOS’09 by David Meisner+

Problem – Resource Utilization in Datacenters

Applications

Core Core

L1 L1

Co-Runners

Core Core

L1 L1

Shared Cache

Memory Controller

2013/9/11

 Co-located applications

 Contention for shared cache, shared IMC, etc.

 Negative and unpredictable interference

 Two types of applications

 Batch – No QoS guarantees

 Latency Sensitive - Attain high QoS

 Co-location is disabled

 Low server utilization

 Lacking the knowledge of interference

Problem – Resource Utilization in Datacenters

 Co-located applications

 Contention for shared cache, shared IMC, etc.

 Negative and unpredictable interference

 Two types of applications

 Batch – No QoS guarantees

 Latency Sensitive - Attain high QoS

 Co-location is disabled

 Low server utilization

 Lacking the knowledge of interference

2013/9/11

Problem – Resource Utilization in Datacenters

 Co-located applications

 Contention for shared cache, shared IMC, etc.

 Negative and unpredictable interference

 Two types of applications

 Batch – No QoS guarantees

 Latency Sensitive - Attain high QoS

 Co-location is disabled

 Low server utilization

 Lacking the knowledge of interference

2013/9/11

Figure: Task placement in datacenters

[Micro’11 by Jason Mars+]

Our Goals: Predicting the interference

 Quantitatively predict the cross-core performance interference

 Applicable for arbitrarily co-locations

 Identify any “safe” co-locations

 Deployable for datacenters

2013/9/11

Our Intuition – Mining a model from large training data

2013/9/11

 Using machine learning approaches

Training
Set

Motivation example

2013/9/11

𝑃𝐷𝑚𝑐𝑓 =

0.485𝑃𝑏𝑤 + 0.183𝑃𝑐𝑎𝑐ℎ𝑒 − 0.138, 𝑖𝑓 𝑃𝑏𝑤 < 3.2
0.706𝑃𝑏𝑤 + 1.725𝑃𝑐𝑎𝑐ℎ𝑒 − 0.220, 𝑖𝑓 3.2 ≤ 𝑃𝑏𝑤 ≤ 9.6
0.907𝑃𝑏𝑤 + 3.087𝑃𝑐𝑎𝑐ℎ𝑒 − 0.561, 𝑖𝑓 𝑃𝑏𝑤 > 9.6

Outline

 Introduction

 Our Key Observations

 Our Approach – Two-Phase Approach

 Experimental Results

 Conclusion

2013/9/11

Our Key Observations

 Observation 1: The function depends only on the pressure on shared

resources, regardless of individual pressures from one co-runner.

For an application A, PDA = f(Pcache, Pbw)

(Pcache, Pbw) = g(A1,A2,…,Am)

2013/9/11

Our Key Observations

 Observation 2:

 The function f is piecewise.

2013/9/11

Our Key Observations

 Naively, we can create A’s prediction model using brute-force approach

 BUT, we can NOT apply brute force approach for each application!

 Thousands of applications in one datacenter

 Frequent software updates

 Different generations of processors

 Even steps for one application is expensive

 Observation 3:

 The function form is platform-dependent and application independent

 Only the coefficients are application-dependent

2013/9/11

Outline

 Introduction

 Our Key Observations

 Our Approach - Two-Phase Approach

 Experimental Results

 Conclusion

2013/9/11

Our Approach - Two-Phase Approach

2013/9/11

Phase 1: Get the abstract model

 Find a function form best suitable for
all applications on a given platform

Phase 2: Instantiate the abstract model

 Determine the application-specific
coefficients (a11, etc.)

Training
Applications

Co-running
Trainer

 Heavy – many training workloads

 Run once for one platform

𝑃D =

𝑎11𝑃𝑏𝑤 + 𝑎12𝑃𝑐𝑎𝑐ℎ𝑒 + 𝑎13, 𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛1
𝑎21𝑃𝑏𝑤 + 𝑎22𝑃𝑐𝑎𝑐ℎ𝑒 + 𝑎23, 𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛2
𝑎31𝑃𝑏𝑤 + 𝑎32𝑃𝑐𝑎𝑐ℎ𝑒 + 𝑎33, 𝑠𝑢𝑏𝑑𝑜𝑚𝑎𝑖𝑛3

One
Application

Co-running
Trainer

 Light-weighted, with a small number of
trainings

 Run once for one application

𝑃𝐷𝑚𝑐𝑓 =

0.49𝑃𝑏𝑤 + 0.18𝑃𝑐𝑎𝑐ℎ𝑒 − 0.13, 𝑃𝑏𝑤 < 3.2
0.71𝑃𝑏𝑤 + 1.73𝑃𝑐𝑎𝑐ℎ𝑒 − 0.22, 𝑜𝑡ℎ𝑒𝑟𝑠

0.91𝑃𝑏𝑤 + 3.09𝑃𝑐𝑎𝑐ℎ𝑒 − 0.56, 𝑃𝑏𝑤 > 9.6

Our Approach - Two-Phase Approach

2013/9/11

Our Approach - Two-Phase Approach

2013/9/11

Q1: What are
selected as

application features

Q2: How?

Q3: What’s the
cost of the
training?

Our Approach – Some Key Points

2013/9/11

Q1: What are selected as application features?

Runtime profiles

Shared cache consumption

Bandwidth consumption

Our Approach – Some Key Points

2013/9/11

Q2: How to create the abstract model?

 Regression analysis

 Configurable

 Each configuration

binding to a function form

 Searching for the best function form for all applications in the training set

Our Approach – Some Key Points

2013/9/11

Q3: What’s the cost of the training when instantiation

 Cover all sub-domains of the piecewise function, say S

 Constant points for each sub-domain, say C

 The constant depends on the form of abstraction model

 C*S training runs in total

 Usually C and S are small, our experience: C=4, S=3

Outline

 Introduction

 Our Key Observations

 Our Approach - Two-Phase Approach

 Experimental Results

 Conclusion

2013/9/11

Experimental Results

2013/9/11

 Accuracy of our two-phase regression approach

 Prediction precision

 Error analysis

 Deployment in a datacenter

 Utilization gained

 QoS enforced and violated

Experimental Results

2013/9/11

 Benchmarks:

 SPEC2006

 Nine real-world datacenter applications

 Nlp-mt, openssl, openclas, MR-iindex, etc.

 Platforms:

 Intel quad-core Xeon E5506 (main)

 Datacenter:

 300 quad-core Xeon E5506

Some Predictor Function

2013/9/11

Prediction precision for SPEC Benchmarks

2013/9/11

 Prediction Error: Average 0.2%, from 0.0% to 8.6%.

Prediction precision for datacenter applications

 15 workloads for each datacenter applications

2013/9/11

 Prediction Error: Average 0.3%, from 0.0% to 5%.

Error Distribution

2013/9/11

-4.00%

-3.00%

-2.00%

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

Error Distribution

Prediction Efficiency

 Precision

 Two-Phase:

0.0~11.7%, Average: 0.40%

 Brute-Force

0.0~10.1%, Average: 0.23%

 Efficiency

 co-running: ~200  12

2013/9/11

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
P

e
rf

o
rm

an
ce

 D
e

gr
ad

at
io

n
Workload ID

Real Two-Phase Brute-Force

Benefits of piecewise predictor functions

2013/9/11

Benefits of piecewise predictor functions

2013/9/11

Deployment in a datacenter

2013/9/11

 300 quad-core Xeon
 1200 tasks when fully occupied

 Applications
 Latency sensitive: Nlp-mt

 machine translation

 600 dedicated cores, 2/chip

 Batch job

 600 tasks, kmeans, MR

 Our Purpose
 QoS policy

 Issue batch jobs to idle cores

Cross-platform applicability

 Six-core Intel Xeon

2013/9/11

0%

20%

40%

60%

80%

1 6 11 16 21 26 AVG

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n

Workload ID

Real Predicted

 Prediction Error: Average 0.1%, range from 0.0% to 10.2%

Cross-platform applicability

 Quad-core AMD

2013/9/11

 Prediction Error: Average 0.3%, range from 0.0% to 5.1%

0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 AVG

P
er

fo
rm

an
ce

 D
eg

ra
d

at
io

n

Workload ID

Real Predicted

Outline

 Introduction

 Our Key Observations

 Our Approach - Two-Phase Approach

 Experimental Results

 Conclusion

2013/9/11

Conclusion

 An empirical model, based on our key observations

 Using aggregated resource consumptions to create the predictor function, thus

working for arbitrarily co-locations

 Piecewise is reasonable and effective

 Breaking the model creation into two phases, for efficiency

2013/9/11

2013/9/11

Backup slides

2013/9/11

How to make the training set representative?

 Partition the space into grids

 Sample for each grid

Backup slides

2013/9/11

How to do domain partitioning?

Specified in configuration file

Syntax: (shared resourcei, conditioni), e.g. (Pbw, equal(4))

Empirical knowledge to perform this task

#Aggregation
#Pre-Processing: none, exp(2), log(2), pow(2)
#mode: add, mul

#Domain Partitioning: {((Pbw), equal(4)), ((Pcache), equal(4)), ((Pcache, Pbw), equal(4, 4))},
#Function: linear, polynomial(2)

Backup slides

 Two sources of error:

 Estimation for shared resources

consumption

 L2 LinesIn

 Phase behavior of applications

2013/9/11

