The Scott Adjunction

Ivan Di Liberti

CT 2019
7-2019
Plot

The main characters of this talk are:

1. Categorical approaches to model theory;
2. Categorification of the Frm \leftrightarrow Top adjunction;
3. The interplay between the previous two points.

Thus, please stay if you are interested in at least one of the topics.

Structure

1. Logic. Motivation, idea, and some results.
Plot

The mains characters of this talk are:

1. categorical approaches to model theory;
Plot

The mains characters of this talk are:

1. categorical approaches to model theory;
2. categorification of the $\text{Frm}^\circ \leftrightarrow \text{Top}$ adjunction;
Plot

The mains characters of this talk are:

1. categorical approaches to model theory;
2. categorification of the $\text{Frm}^\circ \leftrightarrow \text{Top}$ adjunction;
3. the interplay between the previous two points.
Plot

The mains characters of this talk are:

1. categorical approaches to model theory;
2. categorification of the $\text{Frm}^\circ \dashv \text{Top}$ adjunction;
3. the interplay between the previous two points.
Plot

The main characters of this talk are:

1. categorical approaches to model theory;
2. categorification of the $\text{Frm}^\circ \leftrightarrow \text{Top}$ adjunction;
3. the interplay between the previous two points.

Thus, please stay if you are interested in at least one of the topics.
Plot

The mains characters of this talk are:

1. categorical approaches to model theory;
2. categorification of the Frm° ⇍ Top adjunction;
3. the interplay between the previous two points.

Thus, please stay if you are interested in at least one of the topics.

Structure

1. **Logic.** motivation, idea, and some results.
Plot

The main characters of this talk are:

1. categorical approaches to model theory;
2. categorification of the $\text{Frm}^\circ \leftrightarrow \text{Top}$ adjunction;
3. the interplay between the previous two points.

Thus, please stay if you are interested in at least one of the topics.

Structure

1. **Logic.** motivation, idea, and some results.
2. **Geometry.** topological intuition.
Plot

The mains characters of this talk are:

1. categorical approaches to model theory;
2. categorification of the $\text{Frm}^\circ \leftrightarrow \text{Top}$ adjunction;
3. the interplay between the previous two points.

Thus, please stay if you are interested in at least one of the topics.

Structure

1. **Logic.** motivation, idea, and some results.
2. **Geometry.** topological intuition.
Categorical model theory is a subfield of categorical logic aiming to describe the relevant categorical properties of the categories of models of some theory. It was extensively developed by Makkai and Paré in their well-known book [80s].

Motto: Categorical model theory ↔ accessible categories

Since then, some hypotheses have very often been added in order to smooth the theory and obtain the same results of the classical model theory:

1. amalgamation property;
2. directed colimits;
3. a nice enough forgetful functor $U: A \to \text{Set}$;
4. every map is a monomorphism;
5. ...
Categorical model theory is a subfield of categorical logic aiming to describe the relevant *categorical properties of the categories of models of some theory*. It was extensively developed by Makkai and Paré in their well known book [80s].
Categorical model theory is a subfield of categorical logic aiming to describe the relevant categorical properties of the categories of models of some theory. It was extensively developed by Makkai and Paré in their well known book [80s].

Motto: Categorical model theory ↔ accessible categories
Categorical model theory is a subfield of categorical logic aiming to describe the relevant categorical properties of the categories of models of some theory. It was extensively developed by Makkai and Paré in their well known book [80s].

Motto: Categorical model theory ↔ accessible categories

Since then, some hypotheses have very often been added in order to smooth the theory and obtain the same results of the classical model theory:
Categorical model theory is a subfield of categorical logic aiming to describe the relevant categorical properties of the categories of models of some theory. It was extensively developed by Makkai and Paré in their well known book [80s].

Motto: Categorical model theory \leftrightarrow accessible categories

Since then, some hypotheses have very often been added in order to smooth the theory and obtain the same results of the classical model theory:

1. amalgamation property;
Categorical model theory is a subfield of categorical logic aiming to describe the relevant categorical properties of the categories of models of some theory. It was extensively developed by Makkai and Paré in their well known book [80s].

Motto: Categorical model theory \leftrightarrow accessible categories

Since then, some hypotheses have very often been added in order to smooth the theory and obtain the same results of the classical model theory:

1. amalgamation property;
2. directed colimits;
Categorical model theory is a subfield of categorical logic aiming to describe the relevant categorical properties of the categories of models of some theory. It was extensively developed by Makkai and Paré in their well known book [80s].

Motto: Categorical model theory \leftrightarrow accessible categories

Since then, some hypotheses have very often been added in order to smooth the theory and obtain the same results of the classical model theory:

1. amalgamation property;
2. directed colimits;
3. a nice enough forgetful functor $U : \mathcal{A} \rightarrow \text{Set}$;
Categorical model theory is a subfield of categorical logic aiming to describe the relevant categorical properties of the categories of models of some theory. It was extensively developed by Makkai and Paré in their well known book [80s].

Motto: Categorical model theory ↔ accessible categories

Since then, some hypotheses have very often been added in order to smooth the theory and obtain the same results of the classical model theory:

1. amalgamation property;
2. directed colimits;
3. a nice enough forgetful functor $U : \mathcal{A} \to \text{Set}$;
4. every map is a monomorphism;
Categorical model theory is a subfield of categorical logic aiming to describe the relevant categorical properties of the categories of models of some theory. It was extensively developed by Makkai and Paré in their well known book [80s].

Motto: Categorical model theory \leftrightarrow accessible categories

Since then, some hypotheses have very often been added in order to smooth the theory and obtain the same results of the classical model theory:

1. amalgamation property;
2. directed colimits;
3. a nice enough forgetful functor $U : \mathcal{A} \to \text{Set}$;
4. every map is a monomorphism;
5. . .
Categorical model theory is a subfield of categorical logic aiming to describe the relevant categorical properties of the categories of models of some theory. It was extensively developed by Makkai and Paré in their well known book [80s].

Motto: Categorical model theory \leftrightarrow accessible categories

Since then, some hypotheses have very often been added in order to smooth the theory and obtain the same results of the classical model theory:

1. amalgamation property;
2. directed colimits;
3. a nice enough forgetful functor $U : \mathcal{A} \to \text{Set}$;
4. every map is a monomorphism;
5. . .
Meanwhile, in a galaxy far far away...
Meanwhile, in a galaxy far far away...

Model theorists (Shelah ’70s) introduced the notion of Abstract elementary class (AEC), which is how a classical logician approaches to axiomatic model theory.
Meanwhile, in a galaxy far far away...

Model theorists (Shelah ’70s) introduced the notion of Abstract elementary class (AEC), which is how a classical logician approaches to axiomatic model theory.

Thm. (Rosicky, Beke, Lieberman)

A category \mathcal{A} is equivalent to an abstract elementary class iff:

1. it is an accessible category with directed colimits;
2. every map is a monomorphism;
3. it has a *structural* functor $U : \mathcal{A} \to \mathcal{B}$, where \mathcal{B} is finitely accessible and U is iso-full, nearly full and preserves directed colimits and monomorphisms.
Meanwhile, in a galaxy far far away...

Model theorists (Shelah ’70s) introduced the notion of Abstract elementary class (AEC), which is how a classical logician approaches to axiomatic model theory.

Thm. (Rosicky, Beke, Lieberman)

A category \mathcal{A} is equivalent to an abstract elementary class iff:

1. it is an accessible category with directed colimits;
2. every map is a monomorphism;
3. it has a structural functor $U : \mathcal{A} \to \mathcal{B}$, where \mathcal{B} is finitely accessible and U is iso-full, nearly full and preserves directed colimits and monomorphisms.

Quite not what we were looking for, uh?!
This looks a bit artificial, unnatural and not elegant.

Our aim

1. Have a conceptual understanding of those accessible categories in which model theory blooms naturally.

2. When an accessible category with directed colimits admits such a nice forgetful functor?
This looks a bit artificial, unnatural and not elegant.

Our aim

1. Have a **conceptual understanding** of those accessible categories in which model theory blooms naturally.
This looks a bit artificial, unnatural and not elegant.

Our aim

1. Have a **conceptual understanding** of those accessible categories in which model theory blooms naturally.
2. When an accessible category with directed colimits admits such a nice forgetful functor?
The Scott Adjunction (Henry, DL)

There is an \mathcal{S}:

\[\text{Acc}_\omega \leftrightarrow \text{Topoi} : \text{pt}. \]

Acc_ω is the 2-category of accessible categories with directed colimits, a 1-cell is a functor preserving directed colimits, 2-cells are invertible natural transformations.

Topoi is the 2-category of Groethendieck topoi. A 1-cell is a geometric morphism and has the direction of the right adjoint. 2-cells are natural transformations between left adjoints.
The Scott Adjunction (Henry, DL)

There is an 2-adjunction

\[S : \text{Acc}_\omega \leftrightarrow \text{Topoi : pt.} \]
The Scott Adjunction (Henry, DL)

There is an 2-adjunction

\[S : \text{Acc}_\omega \leftrightarrow \text{Topoi} : \text{pt.} \]

1. \(\text{Acc}_\omega \) is the 2-category of accessible categories with directed colimits, a 1-cell is a functor preserving directed colimits, 2-cells are invertible natural transformations.
The Scott Adjunction (Henry, DL)

There is an 2-adjunction

\[S : \text{Acc}_\omega \dashv \text{Topoi} : pt. \]

1. \(\text{Acc}_\omega \) is the 2-category of accessible categories with directed colimits, a 1-cell is a functor preserving directed colimits, 2-cells are invertible natural transformations.

2. \(\text{Topoi} \) is the 2-category of Groethendieck topoi. A 1-cell is a geometric morphism and has the direction of the right adjoint. 2-cells are natural transformation between left adjoints.
The category of points of a locally decidable topos is an AEC.

Thm. (Henry, DL) The unit \(\eta: A \to \text{ptS} A \) is faithful precisely when \(A \) has a faithful functor into Set preserving directed colimits.

Thm. (Henry) There is an accessible category with directed colimits which cannot be axiomatized by a geometric theory.

This problem was originally proposed by Rosicky in his talk "Towards categorical model theory" at the 2014 category theory conference in Cambridge: Show that the category of uncountable sets and monomorphisms between cannot be obtained as the category of points of a topos. Or give an example of an abstract elementary class that does not arise as the category points of a topos.
The category of points of a locally decidable topos is an AEC.
The category of points of a locally decidable topos is an AEC.

Thm. (Henry, DL)

The unit $\eta : A \to \text{ptSA}$ is faithful precisely when A has a faithful functor into Set preserving directed colimits.
The category of points of a locally decidable topos is an AEC.

Thm. (Henry, DL)

The unit $\eta : A \to \text{ptSA}$ is faithful precisely when A has a faithful functor into Set preserving directed colimits.

Thm. (Henry)

There is an accessible category with directed colimits which cannot be axiomatized by a geometric theory.
The category of points of a locally decidable topos is an AEC.

Thm. (Henry, DL)

The unit $\eta : A \to \text{ptSA}$ is faithful precisely when A has a faithful functor into Set preserving directed colimits.

Thm. (Henry)

There is an accessible category with directed colimits which cannot be axiomatized by a geometric theory.

This problem was originally proposed by Rosicky in his talk “Towards categorical model theory” at the 2014 category theory conference in Cambridge: *Show that the category of uncountable sets and monomorphisms between cannot be obtained as the category of point of a topos. Or give an example of an abstract elementary class that does not arise as the category points of a topos.*
The Scott construction

Let \(\mathcal{A} \) be a 0-cell in \(\text{Acc}_\omega \). \(S(\mathcal{A}) \) is defined as the category \(\text{Acc}_\omega(\mathcal{A}, \text{Set}) \).
The Scott construction

Let \mathcal{A} be a 0-cell in Acc_ω. $S(\mathcal{A})$ is defined as the category $\text{Acc}_\omega(\mathcal{A}, \text{Set})$. Let $f : \mathcal{A} \to \mathcal{B}$ be a 1-cell in Acc_ω.

\[
\begin{array}{c}
\text{A} \\
\downarrow^f \\
\text{B}
\end{array}
\quad
\begin{array}{c}
S\mathcal{A} \\
\circlearrowright_{f^* \dashv f_*}
\end{array}
\quad
\begin{array}{c}
\text{SB}
\end{array}
\]

$Sf = (f^* \dashv f_*)$ is defined as follows: f^* is the precomposition functor $f^*(g) = g \circ f$. This is well defined because f preserve directed colimits. f^* preserve all colimits and thus has a right adjoint, that we indicate with f_*. Observe that f^* preserve finite limits because finite limits commute with directed colimits in Set.
$S \dashv pt$ is essentially a schizophrenic 2-adjunction induced by the object Set that inhabits both the 2-categories.
S ⊣ pt is essentially a schizophrenic 2-adjunction induced by the object Set that inhabits both the 2-categories.

\[\text{Acc}_\omega(_, \text{Set}) : \text{Acc}_\omega \leftrightarrow \text{Logoi}^\circ : \text{Logoi}(_, \text{Set}). \]
$S \vdash \text{pt}$ is essentially a schizophrenic 2-adjunction induced by the object Set that inhabits both the 2-categories.

$$\text{Acc}_\omega(__, \text{Set}) : \text{Acc}_\omega \leftrightarrow \text{Logoi}^\circ : \text{Logoi}(__, \text{Set}).$$

In this perspective our adjunction, which in this case is a duality, presents $S(\mathcal{A})$ as a free geometric theory attached to the accessible category \mathcal{A} that is willing to axiomatize \mathcal{A}.
The naive Ivan

Is the Scott adjunction the categorification of the Isbell duality between locales and topological spaces? Not precisely.
The naive Ivan

\[S : \text{Acc}_\omega \leftrightarrow \text{Topoi : pt.} \]
The naive Ivan

\[S : \text{Acc}_\omega \leftrightarrow \text{Topoi} : \text{pt.} \]

\[\mathcal{O} : \text{Top} \leftrightarrow \text{Locales} : \text{pt} \]
The naive Ivan

\[S : \text{Acc}_\omega \dashv \text{Topoi} : \text{pt.} \]

\[\mathcal{O} : \text{Top} \dashv \text{Locales} : \text{pt} \]

Is the Scott adjunction the categorification of the Isbell duality between locales and topological spaces?
The naive Ivan

$$S : \text{Acc}_\omega \cancel\leftrightarrow \text{Topoi} : \text{pt.}$$

$$\mathcal{O} : \text{Top} \cancel\leftrightarrow \text{Locales} : \text{pt}$$

Is the Scott adjunction the categorification of the Isbell duality between locales and topological spaces?

Not precisely.
The geometric picture

- \(\text{Loc} \)
- \(\text{Top} \)
- \(\text{Pos}_\omega \)

\(\text{Loc} \) is the category of Locales. It is defined to be the opposite category of frames, where objects are frames and morphisms are morphisms of frames.

\(\text{Top} \) is the category of topological spaces and continuous mappings between them.

\(\text{Pos}_\omega \) is the category of posets with directed suprema and functions preserving directed suprema.
The geometric picture

\[\text{Loc} \]

\[\text{Top} \]

\[\text{Pos}_\omega \]

\[\text{O} \]

\[\text{pt} \]

\[\text{S} \]

\[\text{pt} \]

\[\text{ST} \]

\text{Loc} is the category of Locales. It is defined to be the opposite category of frames, where objects are frames and morphisms are morphisms of frames.
The geometric picture

Loc is the category of Locales. It is defined to be the opposite category of frames, where objects are frames and morphisms are morphisms of frames.

Top is the category of topological spaces and continuous mappings between them.
The geometric picture

\[\text{Loc} \rightarrow \text{Top} \leftarrow \text{Pos}_\omega \]

\[\text{O} \quad \text{pt} \quad \text{S} \quad \text{pt} \]

\[\text{ST} \]

Loc is the category of Locales. It is defined to be the opposite category of frames, where objects are frames and morphisms are morphisms of frames.

Top is the category of topological spaces and continuous mappings between them.

Pos}_\omega is the category of posets with directed suprema and functions preserving directed suprema.
The geometric picture

\[\text{Loc} \]
\[\text{Top} \]
\[\text{Pos}_\omega \]

- **Loc** is the category of Locales. It is defined to be the opposite category of frames, where objects are frames and morphisms are morphisms of frames.
- **Top** is the category of topological spaces and continuous mappings between them.
- **Pos}_\omega$ is the category of posets with directed suprema and functions preserving directed suprema.
Ionads!
Ionads

The 2-category of Ionads was introduced by Garner. An ionad $X = (X, \text{Int})$ is a set X together with a comonad $\text{Int} : \text{Set} X \to \text{Set} X$ preserving finite limits. While topoi are the categorification of locales, Ionads are the categorification of the notion of topological space, to be more precise, Int categorifies the interior operator of a topological space.

Thm. (Garner) The category of coalgebras for a ionad is indicated with $O(X)$ and is a cocomplete elementary topos. A ionad is bounded if $O(X)$ is a Grothendieck topos. Thus one should look at the functor $O : \text{Bion} \to \text{Topoi}$, as the categorification of the functor that associates to a space its frame of open sets.
Ionads

The 2-category of Ionads was introduced by Garner. A **ionad** $\mathcal{X} = (X, \text{Int})$ is a set X together with a comonad $\text{Int} : \text{Set}^X \to \text{Set}^X$ preserving finite limits. While topoi are the categorification of locales, Ionads are the categorification of the notion of topological space, to be more precise, Int categorifies the interior operator of a topological space.
Ionads

The 2-category of Ionads was introduced by Garner. A ionad \(\mathcal{X} = (X, \text{Int}) \) is a set \(X \) together with a comonad \(\text{Int} : \text{Set}^X \to \text{Set}^X \) preserving finite limits. While topoi are the categorification of locales, Ionads are the categorification of the notion of topological space, to be more precise, \(\text{Int} \) categorifies the interior operator of a topological space.

Thm. (Garner)

The category of coalgebras for a ionad is indicated with \(\mathcal{O}(\mathcal{X}) \) and is a cocomplete elementary topos. A ionad is bounded if \(\mathcal{O}(\mathcal{X}) \) is a Grothendieck topos. Thus one should look at the functor

\[\mathcal{O} : \text{Blon} \to \text{Topoi}, \]

as the categorification of the functor that associates to a space its frame of open sets.
Unfortunately the definition of Garner does not allow to find a right adjoint for O. In order to fix this problem, one needs to stretch Garner definition and introduce large (bounded) Ionads.
Unfortunately the definition of Garner does not allow to find a right adjoint for \mathcal{O}. In order to fix this problem, one needs to stretch Garner definition and introduce large (bounded) Ionads.

$\text{Blon} \leftarrow \text{Topoi}$

$\emptyset \quad \text{pt} \quad \mathcal{S}$

Acc_ω
Unfortunately the definition of Garner does not allow to find a right adjoint for \emptyset.
Unfortunately the definition of Garner does not allow to find a right adjoint for \emptyset.
In order to fix this problem, one needs to stretch Garner definition and introduce \textbf{large (bounded) Ionads}.
Replacing bounded Ionads with large bounded Ionads, there exists a right adjoint for \(O \) and a Scott topology-construction \(ST \) such that \(S = O \circ ST \), in complete analogy to the posetal case.
Thm. (DL)

Replacing bounded Ionads with large bounded Ionads, there exists a right adjoint for \mathbb{O} and a Scott topology-construction ST such that $S = \mathbb{O} \circ \text{ST}$, in complete analogy to the posetal case.